
Dynamic Execution Tracing of Physical Simulations

Jonathan M. Cohen∗

Sony Pictures Imageworks

1 Introduction

Software systems that simulate physical phenomena such as ren-
derers, fluid simulation engines, or cloth dynamics engines, pro-
vide special difficulties during debugging. In particular, they often
process vast amounts of data, making it necessary to trace not only
individual values through an execution, but rather gather higher-
level information about how whole classes of data are processed.
Furthermore, the data flow paths and code paths through a simula-
tion system can be extremely complex, as well as different for every
variable in the system.

Consider, for example, the collision detection phase of a cloth sim-
ulator. A bug in the collision culling routine might result in a sim-
ulation that looks correct, but runs very slowly because too many
triangles are being tested against each other for pair-wise collisions.
Since this might only be happening in, say 10,000 out of 1 million
cases, it could be difficult to figure out that this is occuring, let alone
diagnose and fix the problem using conventional debugging tools
such as gdb. Rather, we wish to take a more high-level approach
that lets us formulate dynamic queries about overall behavior of the
system. Ideally, this debugging code would not have to be embed-
ded in the application itself, but could exist independently.

To address the performance analysis and debugging needs of these
types of applications, Imageworks developed a dynamics package
calledSandstormwhich has an embedded tracing language called
sstrace.

2 sstrace Basics

The sstrace language is based on Sun’s DTrace language [Sun
2005]. A program consists of a set of function-like constructs called
probes, which are identified with breakpoints in the simulation en-
gine. When the various breakpoints are hit, the associated code in
the probe will be executed. A simple probe might look like this:

cloth:ClothSolver@Step:enter {
print -msg "Entered function " -var $PROBE
timer -start clothtimer

}

This would be triggered when program execution entered the func-
tion ClothSolver::Step in the cloth module, and would
print the given message and probe name to a log file, as well as
start a time namedclothtimer . Probes can also be specified
via wildcards. For example, a probecloth:*:enter would be
triggered when any function in thecloth module is entered.

Unlike DTrace, we do not have access to kernel level traps in or-
der to place hooks into our source code. Rather, the software de-
veloper links her library against the sstrace module, and explicitly
adds hook into the source code via C++ macros. A typical set of
such hooks might look like this:

int ClothSolver::Step(double time, double dt)
{

T_PROBE_FUNCTION2(
"cloth:ClothSolver@Step", time, dt);

∗e-mail: jcohen@imageworks.com

...

T_PROBE_FUNCTION_WATCH(errorCode);
return errorCode;

}

The first macro specified two probes,enter and exit , which
will be triggered when the program execution enters and exits the
function. Probes can pass program data to the sstrace language
via additional arguments to theT PROBEmacros. These variables
can then be accessed in a sstrace script via built in variables called
ARG1,ARG2,etc. The second probe in the above example acts
like a watchpoint, and passes thereturnCode value to sstrace.

3 Working Examples

Once the hooks are inserted into the C++ code, the sstrace script
can be modified to profile, collect statistics, trace complex flow
of control, or even print simple stack traces to log files, all with-
out modifying or recompiling the simulation source code. Our
current implementation has built-in functionality to start and stop
timers, manipulate histograms, set indentation level for printouts,
keep track of counters, trace memory usage, and print to log files.
Even this basic level of functionality allows for a debugging and
performance analysis to be carried out orthogonally to the main
application development, similar to the Aspect-Oriented Program-
ming paradigm [Kiczales et al. 1997].

Here is an example that prints an execution trace of the entire cloth
module:

cloth:*:enter {
print -var $PROBE
indentation -increment 2

}
cloth:*:exit{

indentation -decrement 2
}

Here is an example that prints a histogram of the number of colli-
sion tests per triangle during the collision phase at each frame:

cloth:ClothSolver@Step:enter {
print -msg "Simulation Time " -var $ARG1
histogram -clear collisions

}
cloth:Collision@ProcessTriangle:numtests {

histogram -add collisions -addsample $ARG1
}
system:ClothSolver@Step:exit{

histogram -print collisions
}

References

K ICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA , C.,
LOPES, C., LOINGTIER, J., AND IRWIN, J. 1997. Aspect-
oriented programming. InProceedings of European Conference
on Object-Oriented Programming, vol. 1241, 220–242.

SUN M ICROSYSTEMS. 2005.Solaris Dynamic Tracing Guide.

