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Assume we have an algorithm that operates on a graph G = (V,E) and selects an independent set
with the following properties:

• (selection) The algorithm decides at each node whether to include it in the set or not.

• (completeness) The algorithm selects at least one vertex in each connected component for
inclusion.

• (independence) The selected set is independent.

• (locality) The decision to include vertex v depends only on information about edges incident
at v, and vertices directly connected to v.

We can think of this algorithm as defining a selection operator which acts as the indicator function
for the independent set. Call this operator QF , which is defined with respect to an arbitrary graph
G = (V,E) and subset of its edge F ⊆ E. For technical reasons, we always consider F to contains
all self edges (u, u). QF has the following properties:

1. QF (v) 7→ {true, false} for v ∈ V

2. For any connected component under F , there exists at least one vertex v in that connected
component such that QF (v) = true

3. If QF (v) is true, then

(a) ∀u such that (u, v) ∈ E and u 6= v, QE(u) = false and

(b) QF ′(v) = true where F ′ ⊆ F .

Condition 1 is a consequence of the selection property, and is equivalent to saying Q is the indicator
function for this selected set. Condition 2 follows from completeness. Condition 3a guarantees that
the set is independent.

Condition 3b says that if you drop edges from the graph, the independent set cannot shrink, and
can be derived as follows. Consider a vertex v for which QF (v) is true, but there exists an edge to
(u, v) such that for F ′ = F/{(u, v)}, QF ′(v) is false. Now consider that F and F ′ contain no edges
that are not incident at v. By locality, this cannot change the value of QF (v) or QF ′(v). Further,
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since QF (v) is true, that implies that for all vertices connected at v, QF is false (by independence).
Again by locality, since (u, v) is only incident at u and v, the value of QF ′ must be the same as
the value of QF at all points besides v and u, which is false. Therefore, under QF ′ , we now have a
connected component consisting of v and all points incident at v (discounting u) for which QF ′ does
not select any of the vertices in that component. This violates completeness, and therefore QF ′(v)
must be true. This proves condition 3b.

Q induces a relationship on the nodes V , called D, defined as follows:

Definition 1. uD v if ∀F ⊆ E such that (u, v) ∈ F , then either QF (v) = false or u = v.

We first state on useful property of D

Lemma 1. If F = {(a, b)}, aD b, and a 6= b, then QF (a) = true and QF (b) = false. This follows
because {a, b} form a connected component, so at least one of them must be true. Since QF (b) must
be false, it follows that QF (a) = true.

We will now prove the D is a total ordering on V . This requires 3 conditions:

1. (antisymmetry) aD b and bD a⇒ a = b.

2. (transitivity) aD b and bD c⇒ aD c.

3. (totality) Either aD b or bD a for all a and b.

Theorem 1. D is a total order.

Proof. Antisymmetry. Assume aD b and bD a. Consider F = {(a, b)}. Since, under F , {a, b} forms
a connected component, then either QF (a) = true or QF (b) = true. Assume QF (a) = true. Since
bD a, then a = b by the definition of D. If we assume QF (b) = true, since aD b, then a = b by the
same argument.

Transitivity. Let a D b and b D c and assume a 6= b 6= c 6= a (since otherwise the result is trivial).
Consider F = {(a, b), (b, c), (a, c)}. Under this F , {a, b, c} form a connected component, and therefore
QF must be true for at least one of them. If QF (c) = true, then QF ′(c) = true for F ′ = {(b, c)} by
property 3b. That would violate Lemma 1, so this case cannot be true. Similarly, QF (b) = false
which can be seen by considering the set {(a, b)}. Therefore, QF (a) = true. Therefore, for F ′′ =
{(a, c)}, QF ′′(a) = true (by property 3b) and QF ′′(c) = false (by property 3a). Now consider any
set of edges H which contains {(a, c)}. If QH(c) = true, that would also imply that QF ′′(c) = true,
which cannot be. Consequently, aD c.

Totality. Assume a, b do not satisfy aD b and a 6= b. Then there exists an F containing (a, b) such
that QF (b) = true. Let F ′ = {(a, b)}. By 3b, QF ′(b) = true, and hence QF ′(a) = false (by 3a).
Now consider any set H that contains (a, b). If QH(a) = true, it would imply that QF ′(a) = true
by property 3b, which cannot be. Therefore, QH(a) = false, which implies that bD a.

Next, we show that Q can be defined as the “max” operator under this total order.

Theorem 2. Given a total order D, define Q′
F (a) to be true when a is the maximal element among

its 1-ring under F , and false otherwise. Then Q′ satisfies properties 1-3.
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Proof. Property 1 is by definition.

Property 2 is from the existence of a maximal element from any set under a total order.

Property 3a is from the uniqueness of a maximal element under a total ordering.

Property 3b is from monotonicity of D.

We have shown that D induces a total ordering on the vertices V , and that Q selects the maximum
value of the 1-ring at a vertex under this ordering.

Now assume we have two operators, Q and P , both of which satisfy properties 1-3, which we use
to select independent sets of G. Further, assume that these independent sets are disjoint (excluding
any singleton connected components) so that if P (a) ⇒ ¬Q(a) and Q(a) ⇒ ¬P (a). Both induce
total orders on the vertices, which we denote by DP and DQ.

Let E be the inverse of D defined as aE b if and only if bD a. This leads to the following result.

Theorem 3. DP = EQ,

Proof. Since we are excluding singletons, consider any pair of vertices a and b. Let F = {(a, b)}
and assume without loss of generality that a DQ b. Therefore, QF (a) = true, which implies that
PF (a) = false, which implies PF (b) = true by property 2. Because PF selects the maximum under
the total order DP , this means that bDP a. By the definition of E, we have our result.

So if we have multiple algorithms that satisfy selection, independence, completeness, and locality,
and the sets that they select are disjoint, the induced total orders must be inverses of each other.
Since a total order and its inverse are uniquely defined, we can have at most two such total orders,
which implies at most two selection operators, which implies at most two algorithms.

We now state our main result.

Theorem 4. The minmax independent set algorithm which selects both the local min and the local
max nodes simultaneously is optimal, in the sense that no parallel algortihm can select more than
two disjoint independent sets at once.
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