
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Extended Galilean Invariance for Adaptive Fluid Simulation

Maurya Shah Jonathan M. Cohen† Sanjit Patel Penne Lee Frédéric Pighin

University of Southern California, Institute for Creative Technologies
†Rhythm and Hues Studios

Abstract
In an unbounded physical domain, simulating a turbulent fluid on an Eulerian grid is rather tricky. Since it is
difficult to predict the motion of the fluid, it is also difficult to guess which computational domain would allow the
simulation of the fluid without crossing the computational boundaries. To address this dilemma, we have developed
a novel adaptive framework where the simulation grid follows the motion of the flow. Our technique is based on
the principle of Galilean Invariance and the culling of simulation cells using a metric derived from continuative
boundary conditions. We describe our framework and showcase its advantages over traditional techniques. Timing
results and visual comparisons are presented.

1. Introduction

Fluid animations arise in many computer graphics appli-
cations such as games, visual effects, and training simu-
lations. Their importance has driven the development of
fluid simulation techniques suitable for visual applications,
which enable visually compelling simulation of fluid flows
in tractable computation time.

Buoyancy-driven flows are of particular interest for the
entertainment industry. They include explosions, rising
smoke stacks, steam jets, and fires. In such flows, the dom-
inant cause of fluid transport is a buoyancy force which is
generated by a temperature differential in the fluid medium.
Buoyancy-driven flows tend to rise when unbounded by
physical barriers, such as walls or other obstacles, until they
cool enough that the driving temperature differential drops
too low to further propel the flow. Before cooling, a fluid
may rise steadily, swirl, flow around fixed objects, or exhibit
other unpredictable behavior.

The unpredictability of such flows, combined with their
potential to cover a large physical area before dissipating or
cooling, makes them particularly difficult to simulate effi-
ciently. A typical technique for simulating these situations is
given by [FSJ01], where the incompressible Navier-Stokes
Equations are approximately solved using stable methods on
a static uniform grid. This technique requires choosing a grid
that is large enough so that the visually important part of the
flow will never leave the computational domain, while si-
multaneously choosing a high-enough grid resolution so that

the interesting small-scale detail of the flow is not lost. For
large-scale phenomena, these competing requirements may
result in extraordinarily large computational domains. Run-
ning a simulation on such domains typically requires large
amount of memory and computation time.

In this paper, we present an adaptive grid technique for
simulating efficiently buoyancy-driven flows. Our technique
modifies the spatial location and the shape of the grid, not
its resolution. We begin with a small computational domain
centered around the source of the flow. The flow velocity
field and associated material properties are updated using a
standard Navier-Stokes solver [Sta03]. Our algorithm tracks
the region of the flow that is “interesting,” and dynamically
moves the computational domain so that the region of in-
terest of the flow is covered by computational cells. To ef-
ficiently implement this tracking procedure, we exploit a
property of the Navier-Stokes Equations called Galilean In-
variance. To our knowledge, this is the first application of
Galilean Invariance to accelerate flow calculations.

The contributions of this paper are an algorithm for ef-
ficiently moving the computational domain through space,
and an algorithm for adaptively culling “unimportant” cells
from fluid calculations. Implementing these techniques re-
quires small modifications to an existing fluid solver. The
combination of the techniques presented in this paper pro-
vides for visually compelling 3D simulation of large-scale
flows in a fraction of the computation time required by static
grid techniques.

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

2. Related Work

In computer graphics, buoyancy-driven flows are often
simulated using Eulerian (grid-based) methods. Pre-
vious work has focused on simulating fire [NFJ02],
large-scale explosions [RNGF03], compressible and
pseudo-compressible explosions [FOA03, YOH00], and hot
gases [FSJ01, FM97, SF93].

Our solver is based on Jos Stam’s stable fluid
code [Sta99, Sta03, FSJ01] which uses a uniform grid with
finite differencing. This method is popular in computer
graphics because it is fast and stable for large time steps.
This solver has also been extended to solve free-surface
flows [FF01, EMF02]. While inaccurate in an engineering
sense, the algorithm is easy to implement and produces good
visual results.

Adaptive grids are often used in Finite Element, Finite
Volume, and Finite Difference methods to concentrate com-
putational nodes in areas of highest detail. There are sev-
eral varieties of adaptive grid techniques, depending on what
type of adaptation is allowed. Moving grids [Pen98] allow
the positions of the grid vertices to adapt over time. Dynam-
ically adaptive grids [GKS02] refine a grid over the course
of a simulation by creating new computational nodes. Stat-
ically adaptive grids [ABB∗98] determine a priori where to
refine the computational domain based on predicted regions
of higher turbulence.

A different approach for handling high resolution, taken
by [RNGF03], is to simulate only 2D slices of the flow and
add 3D detail via randomized turbulence. By limiting the
simulation domain to 2D slices, the resolution can be in-
creased dramatically without a large performance penalty.
However, this technique only works for flows that have a
strong symmetry. We wish to use a full 3D technique that al-
lows for arbitrarily shaped flows in an arbitrarily large phys-
ical domain.

Gridless Lagrangian techniques based on Smoothed Par-
ticle Hydrodynamics [Mon99] have also been used in com-
puter graphics [PTB∗03, MCG03, DG96]. While promising
for a number of applications, SPH techniques cannot yet
match Eulerian finite-difference techniques in terms of ef-
ficiency when the simulated fluid occupies a large portion of
the simulation space.

3. Eulerian Fluid Simulation

In this section, we present the basic framework used in our
simulator. For more information on this technique, we refer
to [Sta03] and [FSJ01].

3.1. Navier-Stokes Equations

The Navier-Stokes Equations that govern incompressible
buoyancy-driven fluid flows in a homogeneous medium are

∂u
∂ t

+(u ·∇)u = ν∇2u−∇p+α(T −T0)y

−βρy + εh(N×ω) (1)

∇ ·u = 0 (2)
∂T
∂ t

+(u ·∇)T = k∇2T, (3)

where u is the fluid velocity field, p is the pressure field, ν
is the kinematic viscosity, T is the temperature field, T0 is
the reference ambient temperature, α is a scalar controlling
the amount of thermal advection, y is the unit vector point-
ing up ((0,1,0)), β is a scalar influencing gravity, and k is
the coefficient of thermal diffusion. The value ε controls the
amount of small scale details added to the flow through vor-
ticity confinement.

For rendering, we also advect a scalar density field ρ , that
represents dust or particles in the fluid

∂ρ
∂ t

+(u ·∇)ρ = 0. (4)

The set, {u,T,ρ}, is a complete solution to the Navier-
Stokes Equations.

The above equations are discretized into a uniform grid,
which we denote as G. G consists of an axis-aligned lat-
tice of node points, {gi jk}, which are spaced ∆h apart in the
x, y, and z directions. The center of this grid is c, and G
contains I, J, and K nodes in the x, y, and z dimensions. In
other words, G occupies the axis-aligned rectangle spanning
c±

(

I∆h
2 ,

J∆h
2 ,

K∆h
2

)

.

Since our solver is based on [Sta03], we only briefly out-
line the method. First, forces and vorticity confinement are
added directly to the flow. The diffusion term for viscos-
ity is handled with a stable implicit technique. The result-
ing flow, denoted ũ, is projected to be divergence-free using
a Conjugate-Gradient solver that implicitly solves for pres-
sure, based on the Poisson equation

∆t∇2 p = ∇ · ũ. (5)

The projected fluid field is then computed as u = ũ−∇p.
The advection step is implemented using a semi-Lagrangian
approach. Finally, the divergence free velocity field is ob-
tained by performing the projection again. The density and
temperature fields are advected and diffused using identical
techniques. Overall, this technique is fast, stable, and pro-
duces visually compelling buoyancy-driven flows.

3.2. Boundary Conditions

Traditionally, boundary conditions fall into two categories:
closed and open boundary conditions. Closed boundary con-
ditions enforce that the fluid cannot pass through the border

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

of the domain by setting u ·n = 0 at the boundaries, where n
is the direction normal to the domain wall. This can be used
to simulate fluid motion in a fixed domain such as water in
a tank. Periodic conditions assume a fluid that flows off one
side of the domain returns from the other side. This is useful
for generating fluid motion that can be tiled together.

In open boundary conditions, fluids can freely flow off
the edge of the computational domain. Open boundaries as-
sume that the physical domain is infinite, but that the flow is
only computed over a small region. Open boundaries are ap-
propriate for modeling fluid phenomena that occur in large
unbounded spaces, such as an outdoor explosion or steam
rising from a smoke stack. The behavior of the fluid outside
the computational domain is approximated through bound-
ary conditions.

To simulate open boundaries, we use so-called continua-
tive boundary conditions that assume the flow continues un-
changed past the boundary, by enforcing

(∇ux ·n,∇uy ·n,∇uz ·n) = 0. (6)

Boundary conditions of this type are considered inaccurate
by engineering standards [OS00] because they can gener-
ate reflection waves that propagate back from the bound-
ary. A common approach, taken for example by Jiang et
al [JSVL99], is to derive more complex boundary condi-
tions designed to cancel these reflective effects. However, for
computer graphics applications, simple continuative bound-
ary conditions generate flows that are not affected signifi-
cantly by the boundaries of the computational domain and
therefore suit our purpose.

Continuative boundary conditions are enforced at two
stages of the simulation: during the projection step and dur-
ing the self-advection step. During the projection step, the
left-hand side of Equation 5 at a boundary cell is calculated
by assuming that the derivative in the direction normal to
the boundary is 0. During the advection step, if the semi-
Lagrangian back-tracing results in a reference to a location
outside the domain, the velocity value of the nearest bound-
ary cell is used.

4. Dynamic Grid Techniques

Because open boundaries approximate an infinite domain,
nothing prevents the flow from leaving the extents of the
computational domain G. As shown in Figure 1 (a), the den-
sity field may be advected directly out of the domain, leaving
nothing left to render. One remedy is to select a computa-
tional domain that is large enough to contain the simulated
fluid well within its boundaries. However, this implies either
that ∆h is large, in which case the solver would be unable to
resolve interesting smaller-scale turbulence, or that I, J, and
K are large, in which case there would be a large number
of nodes in the computational domain, which would make
the solver run very slowly. Furthermore, even if we choose

(a) (b)

Figure 1: Fluid simulations: (a) fixed domain, (b) moving
domain.

a large domain, the unpredictable nature of a turbulent flow
makes it very difficult to guess a priori just how large the
domain needs to be.

For these reasons, we are motivated to develop a technique
that adapts the location and extents of G dynamically based
on the characteristics of the evolving flow. Our approach is
to combine three techniques: translating the center of the do-
main to “track” the flow, adjusting the extents to capture the
shape of the flow, and culling voxels from G which con-
tribute little to the overall flow calculations. The decision
as to whether a region must be included in the calculation
is based on how close the flow in those voxels meets the
continuative boundary conditions. We describe each of these
techniques in the following subsections.

4.1. Translating the Domain Using Galilean Invariance

Let us consider a puff of steam rising from a vent. The actual
puff is small, but the steam travels a large distance before
dissipating. Our idea is to center the computational domain
in the middle of the steam puff, and move the center, c(t),
as a function of time to keep the puff within G. One way
to implement this is to remove layers of voxels in regions
that the fluid is leaving from and add voxels in regions that
the fluid is moving into. Implementing this procedure would
require a certain amount of resampling and bookkeeping that
could get tricky for a complex flow.

We have developed a simpler approach that exploits a
property of the Navier-Stokes Equations called Galilean In-
variance. Galilean invariance is a principle which states that
the fundamental laws of physics are the same in all inertial
(uniform-velocity) frames of reference. For fluids, it means
that a frame of reference moving at a constant velocity v
is equivalent to inducing a uniform flow of −v in the ob-
served flow field u. This is the principle behind a wind tun-
nel, where blowing wind over a wing is equivalent to mov-

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

ing the wing through motionless air. Figure 2 illustrates this
property. For incompressible fluids, Galilean Invariance also
holds for an arbitrary rectilinear motion of the frame. In this
case, the motion of the frame can be a function of time.
This last property is sometime called Extended Galilean In-
variance [Pop00]. The appendix discusses this property in
more details. It is interesting to note that Galilean Invari-
ance no longer holds in a non-inertial rotating frame. In this
case, the rotation induces Coriolis and angular acceleration
forces [Pop00].

We can exploit Galilean Invariance to efficiently translate
the center of the grid by velocity v(t) as follows. If we trans-
late all voxels {gi jk} along the velocity v(t), we induce a
flow in u equal to −v(t). As a consequence, we can simulate
the fluid in a reference frame attached to c(t) by adjusting
the velocity at each step by −v(t). We also need to keep
track of c(t), the motion of the center of the grid, during the
simulation to be able to reconstruct the motion of the fluid
in a fixed frame of reference. With this technique, there is no
need to add or remove voxels from G, we simply change the
location of each cell.

We choose to locate the center of the grid at the center of
the set of voxels for which ρ is greater than some threshold.
We call the region of space defined by these voxels the region
of interest. Let ρ̄(t) be the center of the region of interest. To
avoid advecting density out of the computational domain, we
would like to compensate for the motion of ρ̄(t) before the
density advection step. This is not possible since ρ̄(t) can
only be computed after the density field has been advected.
To address this contradiction, we predict the velocity of ρ̄(t)
from the two previous time steps

v(t) =
ρ̄(t −∆t)− ρ̄(t −2∆t)

∆t
, (7)

and we define

c(t) =
∫ t

0
v(τ)dτ

as the positional offset since time 0. Note that ρ̄(t) and c(t)
are different points. ρ̄(t) is the center of the region of in-
terest, whereas c(t) is both the center of the grid and the
predicted position of ρ̄(t).

According to Galilean Invariance,

{u(x,t)),T (x,t),ρ(x,t)} (8)

and

{u(x− c(t),t)− v(t),T (x− c(t),t),ρ(x− c(t),t)} (9)

are equivalent solutions of Equations 1-4. Expression 8 rep-
resents the solution of the Navier-Stokes Equations in a
global fixed coordinate system (i.e. “world space”). Expres-
sion 9 represents the equivalent solution in a moving frame
of reference following the gross motion of the fluid.

-v(t)

v(t)

Figure 2: Galilean Invariance. On the left, a static object is
in a uniform flow with velocity v(t). On the right, the object
is moving with velocity v(t) in an otherwise static flow. From
the point of view of the object, these flows are the same.

In summary, our algorithm for translating the domain is
implemented as follows. At time t, we compute v(t) and c(t).
We then store the offset c(t), which is the translation applied
to ρ during rendering, and uniformly add −v(t) to the values
of u stored at each grid cell gi jk .

As shown in Figure 1 (b), this tracking procedure success-
fully follows the region of interest.

4.2. Reshaping the Domain

We translate the domain to keep the region of interest of the
flow centered in the voxel grid. However, the region of in-
terest may change shape significantly over the course of a
simulation. To address this issue, we have developed a tech-
nique for adjusting the domain to accommodate efficiently
the evolving shape of the fluid.

Our method is based on the observation that the bound-
ary conditions as expressed by Equation 6 approximate the
behavior of the fluid at the boundaries of the computational
volume. In order to adapt the boundaries to the evolution
of the flow, we consider the voxels for which this condition
is approximatively met. The main idea is that the boundary
conditions would not affect the computations if they are al-
ready met prior to being enforced.

Equation 6 sets the directional derivative of the flow field
to be 0 across the boundaries. We compute the three axis-
aligned directional derivatives at each voxel (i, j,k) using
central differences

Bi, j,k =
1

2∆h





ux(i+1, j,k)−ux(i−1, j,k)
uy(i, j +1,k)−uy(i, j−1,k)
uz(i, j,k +1)−uz(i, j,k−1)





. (10)

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

(a) (b)

Figure 3: Adaptive grid: (a) rendered fluid, (b) grid visual-
ization (the green dots represent the voxels used in the com-
putations).

If for a given voxel a component of the vector Bi, j,k is
close to 0, we predict that placing a boundary at this voxel,
perpendicular to the corresponding axis, would have a min-
imal impact on the simulation. Based on this analysis, we
have developed a simple algorithm for adjusting the bound-
aries of the domain G at each simulation step. We first com-
pute the directional derivatives, Bi, j,k , at each voxel. Next,
we compute the bounding volume of all the voxels that have
at least one of its directional derivative components above
a given threshold. This bounding volume becomes the new
computational volume. We take this reshaping procedure
even further and cull arbitrary voxels from the list of vox-
els used in the simulation. Our algorithm discards a voxel
if it and its neighbors meet one of the boundary conditions.
We define the neighborhood of a voxel as being all the voxels
within a sphere of radius 6×∆h. By changing this radius, we
can control how aggressively this procedure culls the com-
putational grid. In our implementation, at the beginning of
each new simulation step, we flag the voxels that will be
culled and ignore these in the computations. This does not
require us to reallocate memory.

Figure 3 illustrates our adaptive grid technique. In Fig-
ure 3 (b), the voxels used in the flow computations are rep-
resented in green. The white surrounding box visualizes the
adaptive boundaries of the simulation grid.

In the next section, we demonstrate through a set of exper-
iments how these techniques can yield considerable speed up
over traditional static simulation grids while preserving vi-
sual quality suitable for graphics applications.

5. Results

For fast-rising flows, our technique produces good visual re-
sults on relatively small computational grids. Figure 5 shows
the comparison of simulation 4 (see Table 1), between the

motion of the fluid in a static and adaptive grids. All three
simulations have similar visual quality.

Table 1 shows timing results for several experiments. All
experiments were performed on a 3 GHz PC. Given the same
initial conditions, we studied the performances of three algo-
rithms. The first one is a semi-Lagrangian technique using
a static grid, the second one uses a moving domain as ex-
plained in Section 4.1, and the third one uses a reshaped do-
main as explained in Section 4.2. Column 2 gives the number
of iterations for which each experiment was run. Columns
3, 5, and 8 show the number of voxels included in simula-
tion for the static, translated, and the adaptive grid respec-
tively. For the static and the translated grid, this is a constant
number, whereas for the reshaped grid we store the aver-
age number of voxels over the entire simulation. Similarly,
columns 4, 6 and 9 show the total time in seconds required
for the experiment under each grid type. The table shows the
speedup obtained using the translated and the reshaped do-
main for each experiment in columns 7 and 10 respectively.
For a given simulation, we decide the size of the static grid
by using the displacement of the domain computed using
the translated grid. Experiment 4 shows that for a very high-
rising flow, our algorithm runs up to 5.3 times faster com-
pared to a static grid.

Our technique is significantly faster than one that uses a
large static domain because asymptotically, the advection,
force, and vorticity confinement require O(n) time, where n
is the number of grid cells in G. However, the cost of the
diffusion and projection steps is significantly worse than lin-
ear. The sparse Preconditioned Conjugate-Gradient [NW99]
solver we are using converges in approximately O(n1.5) it-
erations. Multigrid solvers [WE04] appear to converge in
O(n) time, but they are notoriously difficult to implement
for irregular domains. Also, the reshaped grid is faster than
the translated grid because it adapts the grid to the shape
of the fluid, hence a lot of computation time is saved when
the bounding volume is much smaller compared to the ac-
tual grid size. Because the continuative boundary condition
is only an approximation to the true flow, the detail of the
computed flow can be different for the adaptive technique
than for the static technique. However, this depends on how
aggressively the particles are culled in the reshaped grid as
discussed in section 4.2. As can be seen from the examples
in the video and Figure 5, the overall character and visual
fidelity of the flows is maintained. We believe this quality
is high enough for many applications such as visual effects,
virtual reality simulations, and games.

By limiting the domain, one might argue that our algo-
rithm seriously compromise the accuracy of the simulations.
In general, a disadvantage of semi-Lagrangian schemes is
that they do not formally conserve integral invariants such as
total mass. A posteriori correction is needed to enforce con-
servation of such quantities. In our case, we use the Hodge
decomposition to project the flow onto a mass conserving

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

Experiments Iterations Static Grid Translated Grid Reshaped Grid
Voxels Time Voxels Time Speed up Voxels Time Speed up

1 50 270000 1239 150000 612 2.0 119110 488 2.5
2 100 380250 3800 242000 2198 1.7 186257 1691 2.3
3 100 539000 5970 288000 2677 2.2 195583 1761 3.4
4 50 490000 2669 338000 1724 1.5 113074 501 5.3
5 100 490000 5332 288000 2751 1.9 184750 1704 3.1

Table 1: Timing results.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Reshaped
Moving
Static

N
or

m
al

iz
ed

 M
as

s

Time Step

Figure 4: Mass fluctuations.

field. However, the solver we are using for the Poisson equa-
tion does not preserve mass. In Figure 4, we show the nor-
malized mass (with respect to the original mass) as a func-
tion of time for experiment 2 for the static grid, moving grid,
and reshaped grid. We observe that the normalized mass
fluctuates with all three techniques. The algorithms we pro-
pose in this paper do not produce worse mass fluctuations;
in fact the three algorithms perform in remarkably similar
ways as far as mass preservation is concerned.

The conservative nature of our technique allows us to
reduce the number of grid cells, resulting in significant
speedups for flows that cover a large physical domain. Fur-
thermore, our adaptive strategy for determining which cells
to cull allows a smooth control of speed versus simulation
quality. By setting the refinement threshold low, we are less
likely to cull important cells, resulting in a more accurate
simulation at the cost of greater computation time. Setting
a lower value higher threshold will result in a domain that
tightly fits the cells which are most turbulent.

6. Conclusion

We have presented a suite of adaptive grid techniques that
allows efficient simulation of flows over a large physical do-
main. These techniques include an efficient and easy to im-
plement method that translates the domain. We also provide
a method for adapting the extents of the domain to match
the shape of the flow based on the satisfaction of continua-
tive boundary conditions.

As future work, we are interested in further pushing to-
wards real-time fluid flow applications. The metric derived
in Equation 10 provides a structured way to rank how im-
portant each cell in the domain is to the simulation. We can
use this to design a priority scheme that would allow the
simulation of flows within a limited computational budget
while striving for the best possible simulation quality. We
believe that by combining a computational priority scheme
such as this with additional adaptive grid techniques or a
more efficient solver such as multigrid, we will be able to
achieve high quality 3D fluid simulations suitable for games
and other interactive applications. Also, we would like to ex-
plore better predictors for the velocity, v(t), of the center of
the region of interest. For instance, a Kalman filter [GA93]
framework might yield better estimates.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. We thank Wen C. Tien for his assistance
during the paper submission and Jerry Tessendorf for help-
ful discussions on Galilean Invariance. This paper was de-
veloped with funds of the Department of the Army under
contract number DAAD 19-99-D-0046. Any opinions, find-
ings and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views of the Department of the Army.

Appendix

In what follows, we use Einstein notation: the repetition of
an index variable implies a summation over all values of this
index. Let x′ = x−c(t), where c(t) =

∫ t
0 v(τ)dτ , be a change

of coordinate system. Let us consider the velocity u′ = u−

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

Figure 5: Comparison between static grid and our adaptive grid algorithms. The top row of images shows the fluid simulated
with a static grid. The middle row shows the fluid simulated with a the moving domain technique described in Section 4.1 (using
the same initial conditions). The bottom row shows the fluid simulated with the adaptive technique described in Section 4.2.

v. Our goal is to show that if {u(x,t),T (x,t),ρ(x,t)} is a
solution of the Navier Stokes Equations (as formulated in
equations 1 to 4) then so is {u′(x′,t),T (x′,t),ρ(x′,t)}.

First, since both u (incompressible fluid) and v (uniform
field) are divergence free, the sum of both fields, u′, is also
divergence free. Let us now turn to the momentum equation
(equation 1). In the original (fixed) coordinate system, it is
written as

∂u
∂ t

(x,t)+ui
∂u
∂xi

(x,t) = RHS(x,t),

where RHS(x,t) represents the right hand side of equation 1.
In the coordinate system x′ = x− c, the previous equation
becomes

∂u
∂ t

(x-c,t)+ui
∂u
∂xi

(x-c,t) = RHS(x-c,t). (11)

Let us now examine the partial derivatives of u in the new
coordinate system:

∂u
∂ t

(x-c,t) =
∂u
∂ t

∣

∣

∣

∣x-c
−

∂ci

∂ t
∂u
∂xi

∣

∣

∣

∣x-c
=

∂u
∂ t

∣

∣

∣

∣x-c
− vi

∂u
∂xi

∣

∣

∣

∣x-c
∂u
∂xi

(x-c,t) =
∂u
∂xi

∣

∣

∣

∣x-c
.

Bringing these results together in equation 11 yields

∂u
∂ t

∣

∣

∣

∣x-c
+(ui − vi)

∂u
∂xi

∣

∣

∣

∣x-c
= RHS(x-c,t).

Using u = u′ + v, we derive the following relationships be-
tween the partial derivatives of u and u′

∂u
∂xi

∣

∣

∣

∣x-c
=

∂u′

∂x′i

∣

∣

∣

∣

x′

∂u
∂ t

∣

∣

∣

∣x-c
=

∂u′

∂ t

∣

∣

∣

∣x′

+
dv
dt

.

The momentum equation is finally rewritten as

∂u′

∂ t
+u′i

∂u′

∂x′i
+

dv
dt

= RHS(x′,t),

where the term dv
dt is the acceleration of the moving frame

of reference. We can move it to the right hand side, RHS,
where it can be absorbed in a modified pressure term

∇p+
dv
dt

= ∇(p+x′ ·
dv
dt

).

The rest of the terms in RHS are consistent with the
change of coordinate system. In particular, since the field v

c© The Eurographics Association 2004.



Shah et al / Extended Galilean Invariance for Adaptive Fluid Simulation

is spatially uniform, ∇2u′ = ∇2u and ∇×u′ = ∇×u. Con-
sequently the Navier-Stokes Equations remain the same un-
der the transformation x′ = x−

∫ t
0 v(τ)dτ , u′ = u− v, and

p′ = p+x′ · dv
dt .

As a conclusion, the Navier-Stokes Equations for constant
density fluids are invariant under rectilinear acceleration of
the frame of reference.

References

[ABB∗98] AHMAD N., BACON D., BOYBEYI Z., DUNN

T., HALL M., LEE P., MAYS D., SARMA

R. A., TURNER. M.: A solution-adaptive grid
generation scheme for atmospheric flow simu-
lations. In 6 th International Conference on
Numerical Grid Generation in Computational
Field Simulations (July 1998), pp. 327–335.

[DG96] DESBRUN M., GASCUEL M. P.: Smoothed par-
ticles: a new paradigm for animating highly de-
formable bodies. In EGCAS ’96: Seventh Inter-
national Workshop on Computer Animation and
Simulation (1996).

[EMF02] ENRIGHT D. P., MARSCHNER S. R., FEDKIW

R. P.: Animation and rendering of complex wa-
ter surfaces. ACM Transactions on Graphics 21,
3 (July 2002), 736–744.

[FF01] FOSTER N., FEDKIW R.: Practical animation
of liquids. In SIGGRAPH 2001 Conference Pro-
ceedings (August 2001), pp. 23–30.

[FM97] FOSTER N., METAXAS D.: Modeling the mo-
tion of a hot, turbulent gas. In Proceedings of
SIGGRAPH 97 (Aug. 1997), pp. 181–188.

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.:
Animating suspended particle explosions. ACM
Transactions on Graphics 22, 3 (July 2003),
708–715.

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual
simulation of smoke. In SIGGRAPH 2001 Con-
ference Proceedings (August 2001), pp. 15–22.

[GA93] GREWAL M. S., ANDREWS A. P.: Kalman fil-
tering: theory and practice. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1993.

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.:
Charms: A simple framework for adaptive sim-
ulation. ACM Transactions on Graphics 21, 3
(July 2002), 281–290.

[JSVL99] JIANG L., SHAN H., VISBAL M., LIU C.: Non-
reflecting boundary conditions in curvilinear co-
ordinates. In Proceedings of 2nd AFSOR Inter-
national Conference on DNS/LES (June 1999).

[MCG03] MULLER M., CHARYPAR D., GROSS M.:
Particle-based fluid simulation for interactive
applications. In Proceedings of the Symposium
on Computer Animation 2003 (2003), pp. 154–
159.

[Mon99] MONAGHAN J.: Simulating free surface flows
with SPH. Journal of Computational Physics
110, 2 (199), 399–406.

[NFJ02] NGUYEN D. Q., FEDKIW R., JENSEN H. W.:
Physically based modeling and animation of
fire. In SIGGRAPH 2002 Conference Proceed-
ings (August 2002), pp. 721–728.

[NW99] NOCEDAL J., WRIGHT S.: Numerical Opti-
mization. Springer, New York, 1999.

[OS00] OL’SHANSKII M. A., STAROVEROV V. M.:
On simulation of outflow boundary conditions
in finite difference calculations for incompress-
ible fluid. International Journal for Numerical
Methods in Fluids 33 (2000), 499–534.

[Pen98] PEN U.-L.: A high-resolution adaptive mov-
ing mesh hydrodynamic algorithm. Astrophys.
J. Suppl 115 (1998), 19–34.

[Pop00] POPE S. B.: Turbulent Flows. Cambridge Uni-
versity Press, 2000.

[PTB∗03] PREMOZE S., TASDIZEN T., BIGLER J.,
LEFOHN A., WHITAKER R.: Particle based
simulation of fluids. In Proceedings of Euro-
graphics 2003 (September 2003).

[RNGF03] RASMUSSEN N., NGUYEN D. Q., GEIGER W.,
FEDKIW R. P.: Smoke simulation for large-
scale phenomena. ACM Transactions on Graph-
ics 22, 3 (July 2003), 703–707.

[SF93] STAM J., FIUME E.: Turbulent wind fields for
gaseous phenomena. In Proceedings of SIG-
GRAPH 1993 (Aug. 1993), pp. 369–376.

[Sta99] STAM J.: Stable fluids. In Proceedings of
SIGGRAPH 99 (Aug. 1999), Computer Graph-
ics Proceedings, Annual Conference Series,
pp. 121–128.

[Sta03] STAM J.: Real-time fluid dynamics for games.
In Proceedings of the Game Developer Confer-
ence (March 2003).

[WE04] WESSELING P., EDWARDS R. T.: An introduc-
tion to multigrid methods. R.T. Edwards, Inc.,
2004.

[YOH00] YNGVE G. D., O’BRIEN J. F., HODGINS J. K.:
Animating explosions. In Proceedings of SIG-
GRAPH 2000 (July 2000), pp. 29–36.

c© The Eurographics Association 2004.


