

Image-based Lighting with a Piecewise-Constant Importance Function

Jonathan Cohen Rhythm and Hues jcohen@rhythm.com

Overview

- HDRI lighting as an integral
- The beauty of importance sampling
- Importance sampling for HDRI lighting
- Pretty Pictures

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$$

The reflected radiance calculation for direct illumination

 $L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega,n,e) V_p(\omega)(\omega \cdot n) d\omega$

The reflected radiance calculation for direct illumination

 $L_r(p, e) = \int_{\omega \in \Omega} L(p, \omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$

The reflected radiance calculation for direct illumination

 $L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega,n,e) V_p(\omega)(\omega \cdot n) d\omega$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

 $L_r(p,e) = \int_{\omega \in \Omega}$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega,n,e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

 $L_r(p,e) = \int_{\omega \in \Omega} L(\omega)$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

$$L_r(p,e) = \int_{\omega \in \Omega} L(\omega) \cdot 1$$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega,n,e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

 $L_r(p) = \int_{\omega \in \Omega} L(\omega) \cdot 1$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega, n, e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

 $L_r(p) = \int_{\omega \in \Omega} L(\omega) V_p(\omega)$

The reflected radiance calculation for direct illumination

$$L_r(p,e) = \int_{\omega \in \Omega} L(p,\omega) f_r(\omega,n,e) V_p(\omega)(\omega \cdot n) d\omega$$

Let's simplify:

$$L_r(p) = \int_{\omega \in \Omega} L(\omega) V_p(\omega)(\omega \cdot n) d\omega$$

Rewrite as an integral of a simple function.

 $H(\omega, p, n) = L(\omega)V_p(\omega)(\omega \cdot n)$

$$L_r(p) = \int_{\omega \in \Omega} H(\omega, p, n) d\omega$$

HDRI Lighting as an integral

- For each pixel
- \bullet Cast a ray to find p and n
- Evaluate $\int_{\omega \in \Omega} H(\omega, p, n) d\omega$

Choose an *importance function* $I(\omega)$ with

$$\int_{\omega\in\Omega} I(\omega)d\omega = 1$$

Draw samples $\omega_i \sim I(\omega)$

$$\int_{\omega \in \Omega} H(\omega) d\omega \approx \frac{1}{N} \sum_{i=1}^{N} \frac{H(\omega_i)}{I(\omega_i)}$$

Let $I(\omega) \sim H(\omega) \Rightarrow$

Let $I(\omega) \sim H(\omega) \Rightarrow$ $I = \alpha H \Rightarrow$

Let $I(\omega) \sim H(\omega) \Rightarrow$ $I = \alpha H \Rightarrow$ $\int I d\omega = \alpha \int H d\omega \Rightarrow$

Let
$$I(\omega) \sim H(\omega) \Rightarrow$$

 $I = \alpha H \Rightarrow$
 $\int I d\omega = \alpha \int H d\omega \Rightarrow$
 $1 = \alpha \int H d\omega \Rightarrow$

Let $I(\omega) \sim H(\omega) \Rightarrow$ $I = \alpha H \Rightarrow$ $\int I d\omega = \alpha \int H d\omega \Rightarrow$ $1 = \alpha \int H d\omega \Rightarrow$

$$\alpha = \left(\int Hd\omega\right)^{-1}.$$

$$\frac{1}{N} \sum_{i=1}^{N} \frac{H(\omega_i)}{I(\omega_i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{H(\omega_i)}{\alpha H(\omega_i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\alpha} = \frac{1}{\alpha} = \int_{\omega \in \Omega} H(\omega) d\omega.$$

TAKE AWAY: We get exact answer *regardless* of N!

(When *I* is *almost* proportional to *H*, convergence rate improves).

Importance Sampling for HDRI Lighting

- Find an approximation to H, \hat{H}
- Use \hat{H} as importance function
- Better approximation \Rightarrow sampling will converge faster
- \hat{H} is a family of functions (one per surface normal n)
- \hat{H} must be easy to evalulate and sample from

Piecewise Constant Importance Sampling

Idea: Use piecewise constant function Subdivide Env Map into triangles

Preconvolution

For each triangle:

• Store total irradiance as a function of surface normal.

Original Image

Mask to Triangle

Convolve

20 Irradiance Maps

Evaluating the Integral

For surface normal nFor each triangle:

Lookup energy based on surface normal

Apply this value over triangle to get \hat{H} (\hat{H} is piecewise constant)

For N samples: Select random ray direction $\omega_i \sim \hat{H}$ Evaluate contribution in direction ω_i (ray casting)

Result is unbiased Monte Carlo estimation.

Shadow Cache

- Kind of like irradiance cache, but stores visibility info
- Principle: Any improvements to \hat{H} aid convergence
- Improves noise by 10-20 %
- See tech report for details.

Results

50 Rays per sample

Conclusion

- Converges faster aymptotically same, constant is order of magnitude better
- Adaptive tesselation is far better than mercator projection
- Overhead per pixel is high, want to bring it down
- Unbiased scheme means only artifact is noise
- Only noise is due to visibility term

Thanks

- Doug Bloom
- Toshi Kato, Ivan Neulander, Tae-Yong Kim
- R&H modeling and lighting
- Dr. Alex Keller

For more info: http://www.rhythm.com/~jcohen