Interactive Fluid-Particle Simulations
using Translating Eulerian Grids

2010 Interactive 3D Graphics and Games

Jonathan Cohen Sarah Tariq Simon Green

Interactive Fluid-Particle Simulations
using Translating Eulerian Grids

2010 Interactive 3D Graphics and Games

Jonathan M. Cohen Sarah Tariq Simon Green

NVIDIA.

Motivation

- © NVIDIA Corporation 2010

Goal: Real-time Physics <X

NVIDIA

® Approach 1:

® Develop off-line serial algorithm today
® Wwait a few years for 20 GHz CPUs

® This will not work!

® Clock speeds not increasing
® i anything, going down
® core counts Increasing
® No help if your algorithm isn’t parallel

- © NVIDIA Corporation 2010

Goal: Real-time Physics <X

NVIDIA

® Approach 2:

® Develop data parallel method

® cacn generation, core count (roughly) doubles, so wait
log,(Target FLOPS / Current FLOPS) years

® This works, but might not be enough

® Games should look better in the future
® Do more FLOPS => “better looking” ?

® Asymptotic scaling matters

® O(n?) method won’t keep pace with increasing FLOPS as
well as O(n) method

© NVIDIA Corporation 2010

A Better Goal: Scalable Physics <3

® Data Parallel, Linear Time, Scalable Quality
® visual fidelity improves as processor throughput increases

® Resolution is obvious guality knob, but must be
pared with appropriate method

® ow viscosity method + high resolution = high visual
guality

Lo-Res, High Viscosity Lo-Res, Low Viscosity Hi-Res, Low Viscosity

- © NVIDIA Corporation 2010

Outside the box <X

NVIDIA

® “Fluid-in-a-box” is boring, too restrictive

® Pparticles make ideal rendering proxies
® geometric complexity scales with GPU throughput
® Fitinto existing game FX pipelines
® Many rendering options (several at 1I3D10...)

® dea: couple particle system with grid-based fluid
simulation
® Track near-field “region of interest” with simulation grid
® Allow particles to leave simulation grid (far field)
® Obscure transition point

‘; {«1 j ﬂ n{ ﬂ © NVIDIA Corporation 2010

NVIDIA.

Interactive Fluid Simulation

Calculate near-field fluid on grid
Fluid velocities drive particle ® motions

1. Calculate Fluid Velocities~ ™ on Regular Grid
2"d-Order Accurate CUDA Multigrid Solver

2. Interpolate Fluid Velocities/ onto Particles

<3

NVIDIA

3D Interpolation in CUDA

3. Advance Particles /\.\/
o ’

CUDA Particle System

4. Render Particles
CUDA - OpenGL Interop ®

‘; {«1 j ﬂ n{ ﬂ © NVIDIA Corporation 2010

Key Ingredients <3

NVIDIA

Translating grid via Galilean invariance [Shah 2004]
2"d-order semi-Lagrangian advection [Selle 2008]
|IOP-based pressure solver [Molemaker 2008]
Half-angle rendering algorithm [Ikits 2004]
Decoupled particle system from fluid sim

Many CUDA optimizations

Many stability fixes

+ + + + + +

Interactive fluid-driven effects*

*see paper for details... too much to cover here

% } ﬁ 3 0 l 0 © NVIDIA Corporation 2010

Region Tracking: Galilean Invariance <

NVIDIA

© NVIDIA Corporation 2010

<3

NVIDIA

- © NVIDIA Corporation 2010

Pressure Solver <X
nvibiaA

® Enforced flux at boundary must propagate
Instantaneously via pressure
® (incompressible fluid = infinite speed of sound)

® = pressure solver must fully converge

® - Ccannot use PCG, since it doesn’t converge fast
enough

® —> Must use either FFT or Multigrid
(FFT requires periodic boundaries)

© NVIDIA Corporation 2010

Multigrid Pressure Solver <X

NVIDIA

Algorithm based on [Molemaker 2008] [Yavneh 1996]
Implementation described in [Cohen 2009]

- © NVIDIA Corporation 2010

Particle System <X

NVIDIA

® Smooth transition
from fluid to particles:

Algorithm 2 Particle System Update

1: for all 2 do

2: Velinsiqe < Interpolated world-space velocity at Pos|i]
3: Vel putsiae <— Velli| + At - Forceli]

4. w « blend weight at Pos|i]

5. Velli] — w - h/m ide + (1 —w) - Velputside

6: Pos|i| < Posli] + At - Velli]

7: end for

i3 D 2 0 l 0 © NVIDIA Corporation 2010

Rendering <3

NVIDIA

® sort particles by depth via CUDA Radix Sort
® Jead particles sorted to end of list => no deletion needed

® Attach noise function per particle, animated to
erode over particle lifespan

a(z,y) = clip(noise(z,y) — |r| + offset, cutoff).

‘ w Y
2 "

l} D 2 0 1 0 © NVIDIA Corporation 2010

=

NVIDIA

[Video]

<3

NVIDIA.

GPU Optimizations

- © NVIDIA Corporation 2010

NVIDIA next-gen “Fermi” architecture

© NVIDIA Corporation 2010

L
=
O
e
=
st
<
<
o
D
O
c
O
n,
%
=
2
O

EEEE

CUDA Execution Model

® SivT (Single Instruction Multiple Thread) execution
® threads run in groups of 32 called warps
® ihreads in a warp share instruction unit
® 1 instruction x 32 threads per clock
® hw automatically handles divergence

¢ divergence penalty = # different control
paths

® Hardware multithreading
® LW relies on threads to hide latency

® HW resource allocation & thread
scheduling

¢ any warp not waiting for something can run

® context switching is free

ey

>

NVIDIA

Instruction Cache

o
o
D

o
o
(0]

o
=
@

o
=
()

o
=
()

o
=
(]

o
=
(]

o e e
o s
o e e
B e B B
e e e
o o o
o e e
o v e

Load/Store Units x 16
Special Func Units x 4

Interconnect Networl

64K Configurable

Cache/Shared Mem

Uniform Cache

Optimization: Per-warp particles <3
NVIDIA

® particle flow-of-control decided per-warp, rather
than per-particle

® particle birth/death decided by PRNG
® Sced set based on (Particle ID) / 32
| particles in warp follow same flow of control

® o performance improvement

® see paper for more like this

- © NVIDIA Corporation 2010

=

NVIDIA

Results

Performance <X
nvibDiA

Frames per second
Single GPU (Dual GPU%*)

* Rendering on GPU 0, Simulation on GPU 1

- © NVIDIA Corporation 2010

Relative Performance <X
nvibiaA

Frames per Second
(Simulation Only)

[Crane 2007] and Present work on GTX285
[Long 2009] on quad-core CPU (reported in their paper)

- © NVIDIA Corporation 2010

Other applications <3

NVIDIA.

Thanks! <X

NVIDIA

® DevTech Team

® NVIDIA Research

® pPhysXx and APEX Teams
® Darkvoid

Questions ?

- © NVIDIA Corporation 2010

