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Abstract

We present a combination of techniques to simulate turbulent fluid flows in 3D. Flow in a complex domain is mod-
eled using a regular rectilinear grid with a finite-difference solution to the incompressible Navier-Stokes equations.
We propose the use of the QUICK advection algorithm over a globally high resolution grid. To calculate pressure
over the grid, we introduce the Iterated Orthogonal Projection (IOP) framework. In IOP a series of orthogonal
projections ensures that multiple conditions such as non-divergence and boundary conditions arising through
complex domains shapes or moving objects will be satisfied simultaneously to specified accuracy. This framework
allows us to use a simple and highly efficient multigrid method to enforce non-divergence in combination with
complex domain boundary conditions. IOP is amenable to GPU implementation, resulting in over an order of
magnitude improvement over a CPU-based solver. We analyze the impact of these algorithms on the turbulent
energy cascade in simulated fluid flows and the resulting visual quality.

1. Introduction

Simulation of fluid phenomena is an important part of vi-
sual simulation of the natural world. Since the paper of
Stam [Sta99], numerical simulation of fluids has become
prevalent in computer graphics. However, many popular
fluid simulation methods suffer from excessive numerical
dissipation. Visually, this leads to viscous, sluggish looking
flows which are inadequate for highly energetic and turbu-
lent phenomena such as shown in Figure 1.

We propose two strategies for combating excessive numeri-
cal dissipation. The first is to use a low viscosity advection
algorithm. Semi-Lagrangian advection algorithms [Sta99]
allow for large numerical time-steps that are not limited
by a CFL condition, but come with the price of high nu-
merical dissipation. This dissipative effect increases with
the length of a time step. Higher-order semi-Lagrangian
schemes [FSJO1, Str99, KLLLROS5] reduce the amount of nu-
merical viscosity but still carry a relatively steep numerical
dissipative penalty that increases as the ratio between ac-
tual time step and maximum CFL time step increases. We
suggest the use of QUICK, an explicit third order advec-
tion algorithm that minimizes numerical dissipation while
maintaining numerical stability. We advocate QUICK for
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computer graphics applications because we believe it pro-
vides an excellent balance among efficiency, ease of imple-
mentation, and visual appearance. QUICK was introduced
by [Leo79] and is widely used in numerical atmospheric and
ocean models where the need for minimal numerical dissi-
pation is paramount [SM98]. Other explicit schemes have
been proposed for computer graphics applications, for ex-
ample [FM97]. However, we are not aware of QUICK’s use
previously, although [WHLP94] used the related QUICK-
EST algorithm to calculate stream surface functions for flow
visualization.

In nonlinear turbulent flows, the momentum advection op-
erator gives rise to friad interactions. Triad interactions in-
volve three wave numbers and transfer energy from lower to
higher spatial frequencies. An energy flux towards smaller
scales is an inherent property of 3-dimensional turbulence.
In fluids such as water, molecular viscosity acts as a sink of
kinetic energy at scales of a few millimeters. In numerical
models, it is essential that a form of dissipation is present at
the smallest scales that are resolved by the grid (wave num-
ber k = 27 /Ax, where Ax is the grid spacing). Without such
dissipation, energy will pile up unbounded at this wave num-
ber, leading to numerical instability [TL76]. Therefore any
numerical code needs a form of dissipation, whether it is ex-
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Figure 1: Warm smoke rising around a sphere. There are no force terms in addition to thermal buoyancy — all turbulence arises
naturally from instabilities inherent in the Navier-Stokes equations. The intensity of the heat source increases from left to right.

plicitly modeled as a Laplace or a hyperviscosity operator,
or in some other form such as numerical dissipation result-
ing from advection.

The turbulent kinetic energy spectrum is characterized by
an energy spectrum that falls off with the wave number
as Ep = k5/3 [TL76]. Therefore, as Ax shrinks, the high-
est resolved wave number increases, and the amount of ki-
netic energy that must be removed to prevent energy pile-
up decreases. A scale selective advection operator such as
QUICK removes only energy at the smallest scales required
to keep the simulation stable for the grid resolution. Semi-
Lagrangian advection, in contrast, is dissipative across a
much wider range of the energy spectrum than is required.
So while Semi-Lagrangian advection is dissipative enough
that no further viscosity is needed for stability, it is more
dissipative than is required for numerical stability, leading to
loss of visual quality when simulating turbulent fluids. Fig-
ure 8 compares QUICK’s spectral damping against that of
several other popular advection algorithms.

Our second strategy for combating excessive dissipation is
to use globally high resolution grids. The requirement for
the flow to be relatively smooth at the smallest resolved
scales leads to an upper bound of the Reynolds number
(Re = UL/v, where U, L are velocity and length scale of
the problem and v the viscosity) that can be simulated by a
particular grid. The number of required grid points in each
direction scales as Re3/* [FP96]. Therefore, for a turbulent
flow with high Reynolds number, we must use globally high
resolution, not just locally high resolution as with an octree
method. We emphasize that this argument does not depend
on any particular discretization or algorithm, but is inherent
in any numerical approach that is limited to a range of re-
solved spatial scales. Higher resolution grids do not per se
result in lower numerical viscosity. Rather, a given grid res-
olution will allow solutions with a certain minimal amount
of viscosity. In order to lower this amount, it is necessary
to globally increase the grid resolution (but not sufficient).
Thus a high resolution grid combined with QUICK’s scale
selective dissipation is able to produce very turbulent flows
with guaranteed stability. Figure 2(c) shows how this results
in more turbulent motion at higher resolutions.

In the incompressible Navier-Stokes equations, the pressure
field is determined completely by the incompressibility con-
dition and the flow boundary conditions. Solving for the
pressure field requires the solution of a Poisson equation,
which is an elliptical equation and therefore must be solved
simultaneously over the entire grid. Most solvers used in
the graphics community employ a preconditioned conjugate
gradient (PCG) method to solve for pressure because PCG is
easy to code and allows for complex domains and boundary
conditions. PCG’s drawback is that for large grids, which are
required by our desire for globally high resolution, the run-
ning time scales poorly and quickly becomes the CPU bot-
tleneck. Multigrid methods are also used to solve the Pois-
son equation, and have the advantage of scaling linearly in
the number of unknowns. However, they can be complex to
implement for internal boundary conditions.

We introduce a new iterative method for integrating a wide
range of boundary conditions into a fast multigrid-based
Poisson solver, which we term [Iterated Orthogonal Pro-
jections (I0P). The IOP algorithm recasts the enforcement
of non-divergence and boundary conditions as a series of
orthogonal projections from the space of all discrete vec-
tor fields onto affine subspaces in which non-divergence
and boundary conditions are satisfied. Furthermore, IOP is
well-suited for implementation on a GPU, resulting in over
an order of magnitude speedup over a CPU-based imple-
mentation. The range of boundary conditions applicable to
IOP includes any condition that can be expressed as a lin-
ear constraint on the resulting fluid velocity field. This in-
cludes walls, moving objects, inflow, outflow, and continua-
tive (open) boundaries. An important exception is free sur-
face boundary conditions, because Dirichelet conditions on
the pressure field do not translate into linear constraints on
the fluid velocity field. Therefore our method only applies to
single-phase fluids.

We propose combining the QUICK advection scheme with
globally high resolutions grids, which are possible because
we use a fast IOP-based Poisson solver. The two major con-
tributions of our paper are:

(© The Eurographics Association 2008.



Jeroen Molemaker & Jonathan M. Cohen & Sanjit Patel & Junyong Noh / Low Viscosity Flow Simulations for Animation

e description QUICK and its analysis relative to other com-
monly used advection algorithms in graphics, and

e introduction of the IOP algorithm.

As we demonstrate in this paper, combining these techniques
results in flows which exhibit very low numerical dissipation
while remaining computationally efficient.

2. Related work

Finite difference solutions of the 3D Navier-Stokes equa-
tions have been popular in computer graphics since the
work of [Sta99, FSJO1]. The “stable fluids” approach de-
veloped in these papers has been extended to other nat-
ural phenomena such as free surface flows [EMFO02], ex-
plosions [FOAO3], and fire [NFJ02]. Methods for improv-
ing the accuracy of gaseous fluid simulations have gener-
ally attempted to either improve the accuracy of flow bound-
ary conditions, or improve the conservation of flow quanti-
ties such as vorticity, circulation, and momentum. [LGF04]
developed an octree-based discretization capable of captur-
ing highly detailed boundary conditions. An alternate ap-
proach [KFCOO06] has focused on using an irregular grid for
the computational mesh to exactly match complex bound-
ary geometries. [KLLRO5], [SFK*07], and [ZB05] also pro-
pose less dissipative advection algorithms to reduce numer-
ical dissipation. Section 4 provides a direct comparison be-
tween QUICK and a number of alternate algorithms, includ-
ing the BFECC method in [KLLRO5]. We hope to make
the case that our method is a viable alternative for turbu-
lent flows. [ETK*07] has a goal very similar to our own, in
that they seek specifically to minimize the amount of nu-
merical dissipation. However, their approach is quite dif-
ferent — focussing on the conservation of vorticity, they re-
cast the Navier-Stokes equations in the vortex formulation,
and directly discretize and solve this equation over a simpli-
cial (tetrahedral) mesh using discrete differential forms. This
discretization discretely conserves circulation along closed
paths through the domain.

An alternate method for simulating highly turbulent flows,
proposed in [FSJO1, SRFO05], is to use artificial forces such
as vorticity confinement that seek to restore vorticity that
has been lost due to excessive viscosity. These approaches
have produced some of the most visually complex fluid sim-
ulations to date. However, while vorticity confinement re-
injects vorticity (and kinetic energy) that is lost due to dis-
sipation, it cannot fully compensate for excess numerical
dissipation. For example, in a (non-simulated) low viscos-
ity flow, inertia is well-conserved. This can be visible as co-
herent flow features that traverse the flow for a significant
distance, without slowing down or breaking up. By using
low viscosity methods, we are able to capture these features,
as shown in Figures 7 and 3 and seen on the accompanying
video.
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Figure 3: A “daemon death” from The Golden Compass.
Low viscosity allows for correct conservation of momentum
which is visible as slow sustained but turbulent flow around
obstacles. Our method properly handles complex geometries
such as the fallen soldier’s body and open boundaries at the
edge of the finite simulation domain.

3. Algorithms

Algorithm 1 Fluid Solver Overview
ool dbu) _ d0m) yging QUICK)

or X dy

: aa“; — %+[any other forces or terms]

n+1

2
3: Calculate "™ using Equation 6
4: Perform accelerated IOP until required accuracy.

The order of operations in our fluid solver is listed in Al-
gorithm 1. We begin by describing the QUICK scheme in
Section 3.1 followed by IOP in Section 3.2.

3.1. QUICK, a low dissipation advection scheme

To reduce numerical dissipation we use an upwind weighted
advection scheme (QUICK) that was introduced by [Leo79].
The QUICK scheme approximates the advective fluxes of
the cell boundaries with 3rd order accuracy. The numerical
dissipation of the QUICK scheme is highly scale selective,
providing damping only at the highest wave numbers that are
resolved, and thus automatically decreases numerical viscos-
ity at higher grid resolutions. Therefore, unlike fully non-
dissipative schemes such as 2nd order central differencing,
QUICK needs no additional viscosity for numerical stability.

As in [IGLF06], we use the flux form of the advection equa-
tion because it discretely conserves mass and momentum.
The advection equation for momentum for a non-divergent
flow can be written in conservative form as:

du  J(uu) . d(vu) . d(wu)

Fn dx dy dz =0 M
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(a) Semi-Lagrangian advection

(b) QUICK advection

(c) QUICK advection at higher resolution

Figure 2: Smoke stirred by a paddle. Panel (a) is produced using semi-Lagrangian advection on a 64 x 32 x 32 grid. The large
amount of numerical viscosity suppresses the naturally occurring unstable motions in the flow, leading to a smoke field that is
highly filamented but without smaller scales in the flow. Panels (b) and (c) are produced using QUICK advection on grids of the
same and higher resolution (128 x 64 x 64) respectively. Especially in panel (c), natural instabilities are no longer suppressed
and the flow field exhibits a naturally turbulent field containing many scales.

Where u is the velocity vector with components (u,v,w) in
the x, y and z directions respectively.

Assume an equidistant Cartesian grid labeled with (i, j, k)
with node spacing (Ax,Ay,Az) in x, y, and z. Using a stag-
gered velocity representation, the advective term can be dis-
cretized as the finite difference of the fluxes at the cell faces.
The fluxes across the cell faces are approximated with a up-
wind weighted 3rd-order formula. For example, the advec-
tion of v in the x-direction is discretized as

e )
ox ij+ik Ax

@

Here, i £ % refers to the cell face in the positive/negative x-
direction. Since the velocity field is staggered, u is already
available at the cell faces in the x-direction but we have to
interpolate these values to obtain a estimates at the staggered
y-positions,

Uigl et =03 (ui+%,j,k+”i+%,j+1,k)' Q)

The value of Viel jrlk is discretized using an upwind
weighted, 3rd order approximation given by

2 5

Vit d e bk = gVimte ik T gVije ik T gl jete @
lf”H—%.j-«—%,k > 0 and
5 2

Vied ik = glijrbk T glirt it glin et O

ifu, 1 e < 0. We refer the reader to [Leo79] for further
2:JT 72
details and analysis.

The commonly used first-order Euler forward time stepping
scheme is unstable when used with a minimally dissipative
scheme such as QUICK [CHQZS88]. Therefore, it is neces-
sary to use a time discretization that has a less restrictive

region of stability. We have chosen to combine the QUICK
advection scheme with a 2nd order Adams-Bashforth (AB2)
time stepping scheme [FP96]. For a non-constant time step
size At that changes sufficiently smoothly in time, the AB2
scheme is:

At" 1 ou” 1, ou"!
n+1 n n n—1 n
= ~A" A A Y s
" YT {(2 rhA ) ot 27 ot ]
(6)

For the first time step, AB2 is “primed” with a single Euler
step. In order to ensure that Az is sufficiently smooth, we
always subdivide the remaining frame time into even parts
so that we are not left with one very short “catch-up” step
to synchronize our time stepping with 1/24 second frames
required for film.

Typically the time step for semi-Lagrangian schemes is lim-
ited to no more than 5 times the maximum time step al-
lowed by the CFL condition. By comparison, QUICK ad-
vection is stable only when the time step is below the CFL
condition. In practice, therefore, the difference in computa-
tional cost between a semi-Lagrangian method and QUICK
is a constant number which does not depend on grid resolu-
tion. In exchange for this higher constant, one obtains dra-
matically less unnecessary artificial dissipation. QUICK is
slightly more expensive than first-order upwind. However,
because QUICK uses a regular fixed memory access pat-
tern, it is actually faster per time step than semi-Lagrangian
schemes that may have irregular random memory accesses.

Similar discretizations apply to advected scalar fields that
are defined at cell centers such as temperature or density.
For temperature, the flux formulation guarantees that total
heat content is exactly preserved. The smoke fields visible
in Figures 1 and 7 were deformed using QUICK.

(© The Eurographics Association 2008.
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3.2. Iterated Orthogonal Projections
3.2.1. Multigrid Poisson solvers

Typically, the computational bottleneck of an incompress-
ible fluid solver is the calculation of pressure at every time
step, which requires solving a Poisson equation. The most
widely used method in the graphics community to solve
the Poisson equation is the preconditioned conjugate gradi-
ent (PCG) method. There are many advantages to the PCG
method. It is a robust method that is relatively easy to im-
plement and can handle complex domains shapes. Its major
disadvantage is that at higher resolutions the condition num-
ber of the Poisson matrix becomes increasingly poor, and
the computational cost to obtain a specified accuracy in the
solution of the Poisson equation (and corresponding accu-
racy in the enforcement of the incompressibility condition)
becomes larger. The computational cost of the PCG method
with an incomplete Cholesky (IC) preconditioner [GvL96]
scales as O(N'33) where N is the total number of nodes in
the grid.

In contrast, a multigrid-based Poisson solver scales multi-
grid methods will be faster than any PCG implementation
for large enough grid sizes. The first column of Table 1
shows the speed of obtaining a Poisson solution for a fluid
simulation run on a single 2.2mHz dual Opteron worksta-
tion using the PCG method with an IC preconditioner, while
the second column shows the speed for a multigrid solver
based on [Yav96]. A multigrid solver at 2563 resolution is
entirely affordable on a single CPU, whereas a PCG solver
quickly becomes unrealistically expensive for practical pur-
poses. Except where noted, all pressure solvers in this pa-
per have been run in double precision until the maximum
divergence is below 103, Multigrid is especially amenable

PCG Multigrid
Grid time time/N time time/ N
323 0.47 s 14e-5s 0.06 s | 1.8e-6s
643 || 8.63s 3.3e-5s || 0.50s | 1.9e-6s
1283 || 137.9 s | 6.6e-5s || 3.61s | 1.7e-6s
256° || N/A N/A 303s | 1.8e-6s

Table 1: Average computation time for the projection to a
non-divergent flow for a fluid in a simple domain for PCG
and multigrid methods on 2.2 mHz dual Opteron. Conver-
gence is to less than 10~8 divergence per grid cell.

to GPU implementation, as demonstrated by [BFGS03] and
[GWL*03]. We have implemented [Yav96] using the CUDA
language [NVIO7]. As Table 2 shows, multigrid is extremely
efficient on a GPU, almost 55 times faster than the CPU at
the highest resolution. The left column shows timings for an
optimized PCG solver running on an NVIDIA 8800GTX.
The right column shows the same solution obtained with a
multigrid solver. Note that at 1283 and 256° resolutions, the
PCG version does not converge due to the loss of stability
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of the Poisson matrix as a result of the GPU’s limited float-
ing point precision. Multigrid, however, is more robust to
numerical precision issues and converges in all cases.

PCG Multigrid
Grid time time/N time time/ N
323 0.05s | 1.5e-6s 0.04s | 1.1e-6s
643 || 0465 | 1.7e-6s || 0.06s | 2.2e-7 s
1283 || NJA | N/A 0.13s | 6.0e-8s
256° || N/A N/A 0.56s | 3.3e-8s

Table 2: Average computation time for the projection to a
non-divergent flow for a fluid in a simple domain for PCG
and multigrid methods on an NVIDIA 8800GTX. Because of
the limited floating point precision, convergence is to less
than 10~ divergence per grid cell.

The multigrid solver of [Yav96] has excellent convergence
properties and is straightforward to implement, but it can
only deal with simple domains that do not contain inter-
nal obstacles or other complex geometries. There are alter-
natives to a standard multigrid method such as black-box
[Den82], algebraic [Bra86] or geometrical [WL04] multi-
grid methods. All three methods are viable alternatives that
for large enough grids will be superior to any PCG method.
Unfortunately, these methods are not easy to implement and
in certain situations the ideal, linear scaling of computational
cost with number of unknowns may be lost [Den82, WL04].
Our goal with IOP is to create a fast Poisson solver than can
handle complex boundary conditions and is easy to imple-
ment and tune.

By limiting the number of iterations in PCG to a fixed
amount, PCG can also be made to scale as O(N). How-
ever, without sufficient PCG iterations the resulting velocity
field will have significant divergence, which leads to visibly
noticeable artifacts such as clumped marker particles. FFT-
based methods, which scale as O(N1logN) can also be used
to solve the Poisson equation. However, they are difficult to
implement for a variety of boundary conditions and can only
be used for simple problem geometries without complex do-
main boundaries.

3.2.2. Boundary conditions as orthogonal projections

As mentioned in the introduction, removing the divergent
part of the flow can be viewed as an orthogonal projec-
tion [Cho68]. An orthogonal projection can be written as a
matrix-vector multiplication,

Xndiv = TndivX @)

where x is a discrete velocity field and P,4;, is the projection
matrix that removes the divergent part of x. Eigenvalues of
the matrix P,;;, will be either O or 1, with Eigenvector cor-
responding to the null space and range of P,;;, respectively.
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The range of P,y;, is exactly the space of all discrete vec-
tor fields with zero divergence, which we refer to as X,,4;,,-
We do not actually implement the projection via a matrix
multiplication as in Equation 7, but rather by solving a Pois-
son equation. However, for analysis purposes it is helpful to
think of the process of solving for pressure and subtracting
the pressure gradient as applying the linear operator P, ;, to
a vector.

By modifying the right-hand side of the Poisson equation as
in [FOAO03], we could just as easily project to a certain fixed
divergence. This still corresponds to an orthogonal projec-
tion, except that the space X,,4;, is now affine rather than
linear. Geometrically, a linear projection can be thought of
as projecting a point onto a plane that contains the origin,
while an affine projection projects onto a plane that might
not.
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(c) Object moving with ve- (d) u and v set to x and y com-
locity (0.7,0.5). ponents of object’s velocity.

Figure 4: The velocity field in (a) is updated in (b) by setting
the faces of the staggered grid to 0, corresponding to a dis-
crete approximation to a solid object in cell (1,1) that is not
moving. In (c), the object is moving with velocity (0.5,0.7),
and in (d) the u an v velocities on the faces are set corre-
spondingly. Closed or inflow/outflow conditions are identi-
cal, with the values set on the exterior faces of the domain.
These procedures can all be viewed as trivial orthogonal
projections.

The enforcement of many types of velocity boundary condi-
tions also can be viewed as an orthogonal projection. For ex-
ample, Figure 4 shows how solid object boundary conditions
may be enforced trivially by simply setting the correspond-
ing u, v, and w values at the faces near a solid object equal

Both faces set
to their average

i=3/2 i=5/3

Figure 5: To enforce open boundaries on the positive x face
of the domain, we set u values on the i =3/2 and i =5/3
faces to the average of the two values. This is an orthogonal
projection

to the x,y, and z components of that object’s velocity. This
has the effect, for example, of enforcing that the fluid’s nor-
mal velocity is zero at the boundary of a non-moving object.
We implement this procedure in the trivial way, by directly
setting the grid values as shown in Figure 4(b).

Setting these boundary conditions can be thought of as corre-
sponding to orthogonal projections over the space of discrete
vector fields. For instance, the requirement that the normal
velocity is zero at a particular face can be written as a matrix
multiplication with a diagonal unity matrix that has zeros on
the diagonal at those positions where a boundary velocity is
enforced. As with the zero-divergence criteria, the space of
discrete vector fields that satisfy these boundary conditions
is a linear subspace. If the enforced velocity is non-zero as
in Figure 4(d), the projection is onto an affine rather than a
linear subspace, but the situation is otherwise identical.

If we think of this “boundary condition enforcement” proce-
dure as a linear operator, we can write:

Xpound = PooundX (8)

where Py, represents the orthogonal projection of a gen-
eral discrete vector field into the (linear or affine) subspace
of discrete velocity fields that satisfy the boundary condi-
tions. We stress that although we have written this process
as a matrix-vector multiplication, it is implemented by sim-
ply setting the grid values as desired.

The orthogonal projection viewpoint is a quite general:
for example, Figure 5 shows how we enforce continuative
(open) boundary conditions at the edge of the simulation do-
main. In fact, any linear or affine constraint on the vector
field can be satisfied via an orthogonal projection. The prac-
tical calculation of any given projection may not be as simple
as enforcing open, closed, or moving object conditions, but
the analysis in this section still applies.

(© The Eurographics Association 2008.
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Let Xinr = X,0iv N Xpouna be the intersection of the ranges
of both projection matrices. X;,; is the subspace of vec-
tor fields that satisfy both the non-divergence condition and
all specified boundary conditions simultaneously. If X4
and X,,4;, are vector spaces, X;,; will always be non-empty.
If one or more of the spaces are affine, it is required that
Xint # 0, or else there is no way to simultaneously satisfy
all constraints. Py, is the abstract projection operator that
projects orthogonally onto X;,,. Enforcing both the bound-
ary conditions and the non-divergence condition is equiv-
alent to applying P;;. In the PCG approach, for example,
boundary conditions are enforced directly, and then the Pois-
son equation is modified such that subtracting the pressure
gradient maintains these boundary conditions. This approach
is equivalent to evaluating P, X in a single step.

The following is a property of projection operators that is
generally true.

Pt = Y}EEO (PndivPbounds)n . )

To prove this, we introduce the product matrix of both pro-
jections Pyep:

Piter = PudivPround (10)

Since the Eigenvalues of Py, and Pyy,,q are either 0 or 1,
the Eigenvalues of Py, will be between 0 and 1 inclusive.
This property guarantees convergence of an iteration that
consists of a simple repeated multiplication with Py,,. Eigen-
values of Py, will be small when the subspaces of B,;;, and
Pyouna are nearly orthogonal and will be closer to 1 when the
individual subspaces are more parallel. The only Eigenvec-
tors not killed by repeated application of Py, will be those
for which the corresponding Eigenvalues in P, ;, and Py, are
both 1. Therefore iterated projections by Py, is guaranteed
to converge towards P, thus proving Equation 9, with the
rate of convergence determined by the Eigenvalues of P,

Equation 9 translates to an algorithm for applying P;,, with-
out explicitly constructing it: iteratively apply Pyyunqs and
P,4iv by successively directly enforcing the boundary condi-
tions, then using a fast multigrid solver [Yav96] to project
out the divergent part. Because the multigrid solver does not
respect the boundary conditions, they will no longer be prop-
erly enforced at the end of an iteration. However, the error
in boundary conditions is reduced after each iteration, and
can be driven as low as desired by repeated IOP iterations.
In other words, the IOP framework independently satisfies
both constraints, and converges to X;,, in an iterative man-
ner.

Within each IOP iteration, we choose to first enforce bound-
ary conditions then enforce zero divergence. This order leads
to a solution that is fully non-divergent, but may allow some
errors in the boundary conditions. Similarly to limiting the
number of PCG iterations to a small number regardless of
convergence, iterating IOP a fixed number of time guaran-
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Iterations | max(€poyng) | max(V-u)
1 0.13e-1 1.0e-8
3 0.17e-3 1.0e-8
5 0.21e-5 1.0e-8

Table 3: Maximum error in enforcement of the boundary
conditions and non-divergence on the moving object for the
paddle test using semi-Lagrangian advection on a 64 x 32 x
32 grid for different number of iterations at frame 40.

Figure 6: Smoke stirred by a paddle using semi-Lagrangian
advection on a 64 x 32 x 32 grid. Upper panel: 1 IOP it-
eration, lower panel: 3 IOP iterations. Although additional
iterations of I0OP lead to more accurate enforcement of
boundary conditions, the flow remains qualitatively identi-
cal. Semi-Lagrangian advection was used because it gener-
ates less turbulence and hence the errors in boundary con-
dition enforcement are more visible.

tees O(N) scaling in the number of unknowns. Unlike un-
converged PCG, however, unconverged IOP will only have
error in enforcement of the boundary conditions, not in the
enforcement of non-divergence.

The convergence rate of IOP will be slow if the matrix Py,
has Eigenvalues close to 1. To accelerate convergence in
cases that need a more accurate solution, we have modified
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the basic iteration cycle in the spirit of a Krylov subspace
method [GvL96], making more optimal use of each direction
by which the solution vector is changed during a single iter-
ation. The accelerated form of IOP is shown in Algorithm 2.

Table 3 shows the maximum of the error in the enforcement
of the boundary conditions the paddle simulation in Figure 6.
While rapid convergence cannot be guaranteed for all situ-
ations, we have found that in practice, a limited number of
iterations suffices for a satisfactory visual result. We believe
this is because small errors in the boundary conditions being
met will still produce the boundary layers and accompany-
ing velocity shears that are characteristic features of fluid
flow. In fact, for all other images in this paper and on the
accompanying video, only a single IOP iteration is used. A
surprising result is that a single IOP iteration is often enough
for visually demanding applications such as feature film vi-
sual effects. This is the key benefit of IOP — by sacrificing
some error in meeting boundary conditions, we can obtain
a significant overall speedup, often without a noticeable im-
pact on visual quality.

In our experience, the multigrid method of [Yav96] and di-
rectly enforcing boundary conditions are so fast that for a
small number of iterations (e.g. five or fewer), IOP is actu-
ally faster than simultaneously satisfying all constraints in a
single step either with PCG or a black-box multi grid solver
based on [Den82]. We expect this to be even more true for
a GPU implementation, although to date we have only veri-
fied this claim on a CPU. We note an additional disadvantage
of PCG (although not black-box multigrid) is that certain
types of boundary conditions (e.g. open boundaries) result
in a Poisson matrix that is asymmetric and hence more diffi-
cult to solve using iterative method like PCG.

Algorithm 2 Accelerated IOP

1:it=1

2: while desired convergence not achieved achieved do

30w — Pyyugu ! (Directly set velocities to enforce

boundary conditions)

4:  u — P,g;u” (Project onto non-divergent flow)

5. & = error(u;) (Le error in boundary conditions)
6: ifit > 1 then
7.
8
9

wyir = u’’ —u’~! (correction vector)

o= giZ/eit—]

: Uypp = v + o Ugif
10: Ermp = error(Wyyp)
11: if &,y <& then
12: ui = W
13: end if
14:  end if
15:  it++

16: end while

Figure 7: Blocks falling over produce an area of propagat-
ing turbulence. Minimal viscosity allows for sustained prop-
agation and the emergence of small scale motion.

4. Results

Figure 1 shows a warm plume rising around a sphere. Sim-
ulations are shown for a constant heat source that is increas-
ing in temperature from left to right with a thermodynamics
model similar to [FSJO1] (Equations 6-8 with @ = 0). The
flow is visualized using a passive scalar density field that is
rendered as smoke. The density field is advected by the flow
and is dissipated back to a zero over a set time scale. Larger
values for the heat source at the bottom provide more poten-
tial energy to drive the flow, producing plumes that are in-
creasingly turbulent. For larger heat sources the flow around
and above the sphere becomes naturally chaotic and the flow
visually contains many spatial scales. The simulations of the
plume were computed on a 192 x 128 x 192 numerical grid
running on a 2.2 mHz dual Opteron workstation, with a com-
putational cost of between 15 s and 200 s per frame, depend-
ing on the number of substeps required by the CFL condi-
tion. We expect this would be faster with our the GPU-based
Poisson solver, although we have not integrated it into our
full Navier Stokes solver yet.

Figure 2 depicts a moving paddle mixing a smoke field in a
rectangular domain. This figure is included to demonstrate
the differences that arise from different levels of numeri-
cal viscosity that are present during a numerical simulation.
The simulations are rendered using massless marker parti-
cles that are advected by the flow. Figure 2(a) shows semi-
Lagrangian advection at a grid resolution of 64 x 32 x 32.
There is a large amount of folding and stretching leading
to thin filaments in the smoke field, but the high amount of
numerical viscosity suppresses the naturally occurring un-
stable motions. Figure 2(b) shows the same set-up simu-
lated using the QUICK advection scheme. The flow is much

(© The Eurographics Association 2008.
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more energetic and exhibits many additional small scale
features. These small scales arise from natural instabilities
driven by gradients in the flow field (shear instabilities) and
are no longer fully suppressed by artificial viscosity. Fig-
ure 2(c) shows the additional effect of a finer grid resolution
(128 x 64 x 64), reducing the amount of numerical viscosity
even further because of QUICK’s scale selective damping.
A natural turbulent cascade towards small scales is now pos-
sible. This allows for efficient mixing of smoke, completely
destroying the physically incorrect stretched filaments that
were evident in Panel (a).

To quantify the effect of different advection schemes and
their different levels of numerical dissipation we computed
kinetic energy spectra for simulations using several different
advection schemes. Figure 8 shows spectra of kinetic energy
for the paddle simulation at a resolution of 64 x 32 x 32 at
frame 40. A spectrum of kinetic energy represents the energy
that is present at any particular wave number, with higher
wave numbers representing smaller spatial scales. The spec-
tra are obtained by performing a 3 dimensional Fourier trans-
form of the velocity field. Energy is integrated over the 3
wave number components to obtain an energy spectrum for

absolute wave number k = , /k2 + kg +K2.

GILICK

BFECC

Semi-Langrangian
Semi-Langrangian (dt = 2*cfl)
- Centered

Wave number

Figure 8: Spectra of kinetic energy for the paddle simulation
on a 64 x 32 x 32 grid using different advection algorithms:
QUICK, BFECC, semi-Lagrangian with the same time step
size as the other methods, semi-Lagrangian using a time-
step that is twice as large, and non-dissipative 2nd-order
centered differencing. Centered differencing suffers from an
accumulation of energy at the highest resolved wave number
resulting in numerical instability. Of all other methods, the
QUICK algorithm retains most of the kinetic energy at all
wave numbers while maintaining numerical stability.

(© The Eurographics Association 2008.

Inspection of Figure 8 shows that centered differencing, a
purely non-dissipative scheme, retains the largest amount of
kinetic energy. However, note the pile-up of energy at the
highest wave numbers (smallest resolved scales). This trans-
fer of energy is the effect of triad interactions and will lead
to numerical instability. Of the other algorithms investigated,
the semi-Lagrangian scheme using the larger time step size
is the most dissipative, leading to the least amount of ki-
netic energy at all scales. The difference in kinetic energy
with the semi-Lagrangian scheme using a smaller time step
is most pronounced at larger scales. The BFECC scheme
[KLLROS5] does much better, leading to an approximately
three-fold increase in energy for the higher wave numbers.
QUICK performs best, as the kinetic energy spectrum falls
off more gradually towards higher wave numbers, produc-
ing kinetic energy levels at higher wave number that are an
order of magnitude larger then those obtained using semi-
Lagrangian advection. The difference in spectral slope is
a result of QUICK’s scale selective numerical dissipation.
In effect, dissipation is only significant at the highest wave
numbers where it is a necessity for numerical stability.

Figure 3 shows an effect from the feature film “The Golden
Compass.” This simulation involves a creature transforming
into golden dust and flowing around a dead soldier. It is a
highly turbulent simulation with complex geometry, closed
boundaries at the bottom of the domain, and open bound-
aries on the sides. Even though this simulation had to meet
the visually demanding requirements of feature film, a single
IOP iteration was enough.

Figure 7 shows a set of blocks falling onto a flat surface. The
flow that is generated by the blocks’ motion produces an area
of rolling turbulence that propagates away from the blocks.
The near absence of viscosity allows the prolonged propaga-
tion of the turbulent field as evidenced by the layer of smoke
that is being mixed up in the clear air above. This simula-
tion was computed on a 128 x 64 x 64 numerical grid. The
horizontal extent of the simulated domain is indicated by the
extent of the layer of smoke. Open boundary conditions are
used at the sides of the computational domain.

5. Conclusion

As we have demonstrated, the combination of QUICK with
IOP is a robust approach for simulating highly turbulent fluid
flows. We have chosen these methods because when used
together, they accurately model the energy cascade present
in real turbulence which is important for visual modeling
of many phenomena. In fact, these methods are so turbulent
that they rapidly lead to chaotic motion, which can present
a challenge for artistic control. On the other hand, they are
efficient, robust, and have few parameters to tune, which al-
lows an artist to achieve a desired effect by rapidly trying
several different versions of a simulation.
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