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Figure 1: Left: sixteen sample per pixel stochastic rendering with a pixel box filter. Right: same input samples with new filtering algorithm.

Abstract

Stochastic renderers produce unbiased but noisy images of scenes
that include the advanced camera effects of motion and defocus blur
and possibly other effects such as transparency. We present a sim-
ple algorithm that selectively adds bias in the form of image space
blur to pixels that are unlikely to have high frequency content in
the final image. For each pixel, we sweep once through a fixed
neighborhood of samples in front to back order, using a simple ac-
cumulation scheme. We achieve good quality images with only 16
samples per pixel, making the algorithm potentially practical for
interactive stochastic rendering in the near future.

1 Introduction

Hardware rasterization pipelines have been highly successful at ren-
dering complex scenes. However, they have difficulty reproducing
the physical camera effects of defocus blur and motion blur. Re-
cent progress has been made in using stochastic techniques for in-
teractive rendering, producing those camera effects by randomly
varying center of projection and/or time per sample, as in typical
offline rendering systems. Unfortunately, at interactive frame rates,
the number of random samples available in the foreseeable future
is not sufficient to produce visually smooth images using simple
unbiased sample averaging.

If we allow the introduction of some bias, we can reduce noise in
the final image with a feature-sensitive blur. Blurring has the effect
of spreading information locally over the image, so it increases the
total number of samples informing each pixel value. This “denois-

ing blur” is distinct from the physical blur resulting from the optics
of a camera, and refers to artificial filters that may be applied in
order to reduce high frequency noise.

Our approach is to design a denoising blur method that assumes
the input data has been generated via an unbiased physical blurring
process. Our goal, then, is to design a filter that reduces visible
noise while adding a visually acceptable amount of bias. Other ap-
proaches such as bilateral filtering may be used similarly. However,
by using depth information from all samples during reconstruction,
we can properly handle occlusion effects that often defeat purely
image-based methods. Our method processes each pixel indepen-
dently by depth sorting a fixed number of nearby samples, and then
sweeping over them once with a simple accumulation step. The
algorithm is simple enough to be amenable to implementation on
future graphics hardware. We demonstrate the algorithm on motion
blur, defocus blur, and stochastic transparency.

2 Related work

Researchers have investigated blurring irradiance in a similar spirit
to our bias-versus-noise tradeoff, in various ways. This has been
done in world space (e.g. [Ward et al. 1988]) and screen space
(e.g. [Kontkanen et al. 2004]). Jensen and Christensen’s [1995]
screen space algorithm is close to ours in that it used a set of fixed
width tiles in screen space, but it did not need to deal with issues of
visibility so is fairly different in detail. Diffusion has been used
in screen space to lower noise in stochastic rendering (e.g. [Xu
and Pattanaik 2005]); however, these techniques have not yet been
shown to work over time or for non-illumination noise, and they
may not be fast enough for our purposes.

Several researchers have examined reconstruction of stochastic
samples as a signal processing problem (e.g. [Egan et al. 2009;
Soler et al. 2009]). These techniques are more sophisticated and ac-
curate than ours, but as yet cannot be applied generally when there
is both motion and defocus blur. Meyer and Anderson [2006] ap-
plied motion blur analysis over multiple frames, but that is difficult
unless future motion paths are known. Rushmeier and Ward [1994]

9



estimated statistical confidence for each pixel and allowed energy
to “leak” to neighboring pixels in the presence of an outlier sample.
They did not take into account visibility order and their method is
thus best suited to Monte Carlo lighting where outliers are common.

Overbeck et al. [2009] created Monte Carlo images directly in
wavelet space and then trimmed off wavelet coefficients that ap-
peared to be noise. This smoothed blurry regions and maintained
roughly uniform sampling. The method is a sampling and recon-
struction framework rather than a pipeline, but it does address sim-
ilar issues as our method, and the reconstruction could in principle
be added to the end of a pipeline with fixed sampling. Such an
algorithm might be an interesting alternative to ours.

A variety of algorithms simulate optical blurring from a pinhole
camera rendering, but these techniques start with much poorer in-
formation than our input data, e.g. missing occluded objects that
would be visible to an off-center point on the lens. Some re-
searchers use “taps” at each shading point to determine how to lo-
cally blur (e.g., [Scheuermann 2004; Robison and Shirley 2009]).
Another approach is to use the depth map to decide how to blend
images blurred at several scales (e.g. [Filion and McNaughton
2008]). Researchers have also proposed several depth-of-field ap-
proximations for scenes broken into layers (e.g. [Kosloff et al. 2009;
Lee et al. 2009]). These techniques attain good results but solve a
problem with different input than ours. Point-based methods also
attack motion blur (e.g. [Heinzle et al. 2010]) and defocus blur
(e.g. [Krivanek et al. 2003]) but these also solve a different and
somewhat more challenging problem than ours as many invisible
points must be processed.

To our knowledge, filtering stochastic sample buffers at low sam-
pling densities is a largely unexplored area. This may simply be
because the offline rendering community has historically been able
to take more samples when needed, and only recently has the in-
teractive rendering community been able to take more than one per
pixel.

3 Algorithm

We start with a buffer of samples with associated color ci, depth,
transparency, and motion. The classic reconstruction algorithm sets
each pixel to a weighted average of sample colors for all samples
within a fixed window in screen space centered at the pixel. Algo-
rithm 1 describes traditional filtering for the case of N samples per
pixel and a pixel filter f with diameter D. Figure 2 shows a tuto-
rial scene with a reference solution and as rendered by Algorithm 1
using a unit width box filter for f .

To gain some intuition about the problem, we first examine alter-
ing the algorithm above to make the filter wider for samples rep-
resenting blurry effects. We could think of this as “splatting” sam-
ples with variable width splatting kernels in a point based rendering
scheme. We assign a denoising diameter, di, to each sample that
is 1.0 for samples where conventional pixel filtering is desired, and

Algorithm 1 Traditional reconstruction

1: rgb c = (0, 0, 0); // accumulated color
2: float w = 0; // accumulated weight
3: for each i of N ∗D2 samples around a pixel do
4: wi = f(xi − xc, yi − yc); // (xc, yc) is pixel center
5: w += wi;
6: c += wi ∗ ci;
7: end for
8: cpixel = c/w; // so that we don’t need wi to sum exactly to 1

Figure 2: Left: Reference image of three flat-shaded spheres with
defocus. Right: a stochastic rendering at 16 samples per pixel.

Figure 3: Left: Output of Algorithm 1B with labelled visual arti-
facts. Right: the result of Algorithm 2.

larger (wider) for samples where blurring is desired. The resulting
Algorithm 1B just requires a change to line 4:

wi = (1/d2
i )f((xi − xc)/di, (yi − yc)/di);

The denoising diameter may be any programmer-selected function
of sample depth, motion, transparency, texture frequency content,
or even artistic variables such as visual importance. A simple
choice for di is the circle of confusion at the sample’s depth.

An example using this algorithm is shown in the left of Figure 3.
Three visual artifacts are immediately apparent (see labels in the
figure):

1. Where there is a blurred and almost opaque object in front of
a sharp object, there is obvious noise.

2. Where there is a sharp (in focus) object in front of a blurry
object, the blurry object “leaks” on top of the sharp object.

3. Where there are two colors being blurred, there is some low
frequency noise.

Origin of artifact 1. This artifact occurs where almost all the
samples are likely to be from the front blurry object. In the ex-
ample figure, the blurry blue object contributes with a wide filter
(di > 1), and so each output pixel draws blue samples from a wide
neighborhood of input pixels. But because the in-focus red object
uses a narrow filter (di = 1), each output pixel receives red samples
from only one input pixel. Suppose the coverage of the front object
is 15/16 at 16 samples per pixel. Due to random variation, we might
have 0, 1, or 2 samples from the in-focus object contributing to the
result, and these variations are visually obvious. In summary, the
sharp features are under-sampled.

Origin of artifact 2. This artifact has a color shift inside the edge
of the middle sphere and occurs because even when all of the sam-
ples in the center pixel are in-focus, samples of the blurry back-
ground object in neighboring pixels are allowed to influence the
pixel value. This artifact is as wide as the largest value of di.
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Origin of artifact 3. This artifact occurs because blurring a
stochastic image lowers noise amplitude but also moves it to lower
spatial frequencies. Humans are more sensitive to contrast fluctua-
tions at middle frequencies that peak at around 5-15 pixels for most
display conditions.

Artifact 3 can easily be addressed by using more samples or wider
windows, but at the expense of efficiency. An approach by Bou-
los et al [2007] lessens this artifact by using cooperative patterns
where samples in adjacent pixels are negatively correlated. We now
develop an algorithm to address the first two artifacts.

3.1 Sweep-based algorithm

One approach to addressing artifacts 1 and 2 above would be to
develop two approaches, one for each artifact, and combine them
based on the demographics of the samples near a pixel. Better
would be to find a solution that will work for either case so that
hybrid pixels will be handled automatically. First, how would we
approach these two cases independently?

Addressing artifact 1. When there are just not enough in-focus
samples to produce a good image, we need more samples. When
there is a blurry object with high opacity obscuring an in-focus ob-
ject, the in-focus object should be dim, but still in focus. Unfor-
tunately 1-2 samples per pixel is not enough to make the in-focus
object look good. If we do not want to take more samples, one al-
ternative is to take samples of the sharp object from neighboring
pixels. This blurs the in-focus object, but lowers its noise.

Addressing artifact 2. This case is more straightforward: when
there are many samples in focus in the center pixel, blurry objects
in the background should lose influence. Almost all approximate
depth-of-field algorithms somehow deal with this effect.

The key idea in this paper. At first glance the proposed solutions
to the two artifacts seem at odds: “blur sharp objects when there are
blurry objects in front” versus “turn off blurry objects when there
are sharp objects in front.” However, if you approach each of these
with weights rather than binary decisions they can be made simi-
lar. This gives rise to the key idea in this paper: The filter used for
each sample should be a combination of its denoising filter and the
denoising filters of the samples in front of it. A sharp object in iso-
lation will tend to use a narrow filter, but as more blurry samples are
in front of it, it will tend to use a wider filter. A blurry background
object will tend to use a wide filter, but as more samples in front of
it use a narrow filter, it will tend to use a narrow filter. Algorithm 2
shows an approach that has these properties. Here D is the width of
the wide filter, and the narrow filter is the default filter used in un-
blurred regions. When all the samples have the same diameter, the
algorithm behaves as desired and either a narrow or wide blurring
diameter is used for all samples. When we have the case of blurry
samples in front of sharp samples, a filter with more wide weight
is used for the sharp samples as desired. When some of the center
pixels are sharp (use fn) then the contribution of blurry background
pixels is diminished. Figure 3 shows the output of Algorithm 2. The
flaw of Algorithm 2 is that the binary “if” in line 10 can produce
a visual break in objects that go in and out of focus. This can be
solved by blending between the “if” clauses in the spirit of MIP-
maps, or by adding clauses for additional intermediate scales, e.g.
for filter widths of 1, 3, 5, and 7 pixels. In practice we have found
both approaches to work well. See Appendices for source code.

For depth of field, the same reconstruction can be computed more
efficiently, with no sorting and less computation. Depth of field
separates samples into three layers: a widely filtered (out of fo-
cus) layer near the camera, then a narrowly filtered (in focus) layer

Algorithm 2 New reconstruction
1: sort all samples that can influence this pixel, in depth
2: rgb c = (0, 0, 0);
3: float w = 0;
4: float an = 0; // accumulated narrow contribution
5: float aw = 0; // accumulated wide contribution
6: for each sample i in front-to-back order do
7: compute di from zi or other inputs
8: fn = f(xi − xc, yi − yc);
9: fw = (1/D2) ∗ f((xi − xc)/D, (yi − yc)/D);

10: if di < D then
11: wi = (1− aw) ∗ fn + aw ∗ fw;
12: an += (1− aw) ∗ fn;
13: else
14: wi = (1− an) ∗ fw + an ∗ fn;
15: aw += (1− an) ∗ fw;
16: end if
17: w += wi;
18: c += wi ∗ ci;
19: end for
20: cpixel = c/w;

near the focal plane, and a widely filtered layer farther away. The
boundary layers are at constant depths, the depths where the cir-
cle of confusion crosses the threshold value. We observe that the
output of Algorithm 2 is unaffected by permuting samples within a
layer. Thus we can loop over the unsorted samples, accumulating
the sums of fn, fw, fn ∗ ci, and fw ∗ ci separately for the samples
in each layer, and finally combine these sums front-to-back to ar-
rive at the identical pixel value as before. For blending, samples
near a layer boundary may contribute proportionally to both lay-
ers. Efficiently identifying layers in the presence of motion blur or
transparency is a topic for future research.

4 Results

We developed the algorithm in a simple stochastic ray tracer and
then ported it to three existing stochastic rasterizers used for dif-
ferent projects. Figures 1 and 4 were generated using the system
described by McGuire et al. [2010]. The noise is somewhat higher
than in the other figures due to the underlying regular sampling of
that system. This emphasizes that our algorithm is agnostic about
the sampling pattern used to generate the image, but the quality
of the results does depend on the sampling patterns used. These
pictures used 1x1 and 5x5 tiles and blending between the “if” state-
ments (see Appendix A for the code segment).

Figure 5 was generated in a general software stochastic rasterizer
similar in spirit to that of Fatahalian et al. [2009]. It shows an ex-
treme case that is difficult for algorithms that use a pinhole camera,
and something of a worst case for our algorithm: an in-focus ob-
ject of high saliency behind a fuzzy object. Notice the face of the
fairy is blurry compared to the reference solution; this is a con-
scious choice of our algorithm in preference to noise. This figure
also shows a variation that biases the transition in favor of small
scales when the scales are mixed. This emphasizes that our method
has the flexibility for artistic control.

Figure 6 shows a stochastic transparency image generated by the
system described by Enderton et al. [2010] where each sample’s
“width” increases with transparency. Again this is something of
a difficult case for our algorithm, because the correct tradeoff of
blurring versus noise is not as obvious a choice when transparency
is not an intrinsically a blurry effect. Thus our method is probably
best suited to handling transparency in effects such as smoke.
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Figure 4: Cathedral with (top) 1x1 box filter and (bottom) the new
algorithm. 16 samples per pixel.

5 Discussion

We have presented a simple algorithm for selectively adding blur
to reduce noise in stochastic renderings. We have shown results for
motion and defocus blur as well as stochastic transparency. The
algorithm is designed for interactive stochastic rasterization, and
may also be useful for preview for film rendering.

Many avenues remain for future work. One is to explore how artis-
tic control should be exposed in the transition function. Another
is to determine whether special purpose hardware is needed to pro-
cess the sample buffer, or whether it is sufficient to supply a pro-
grammable sample resolve. We have noted that sometimes blur is
better than noise, but exactly when this is true is not well under-
stood, and a psychophysics model could be beneficial. Finally, we
note that we have presented an existence proof of a simple and ef-
ficient algorithm for reconstructing pixels from stochastic samples;
this is a surprisingly sparsely explored area and there may be much
better algorithms yet to be discovered.
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A Two Scale Code Sample

This algorithm was used for Figure 1 (cars) and blends between two
scales: 1x1 and 5x5 blocks. Here N is the number of samples in the
widest tile, and ns is the number of samples in a pixel. As a default,
denoisingblur is the maximum of the circle of confusion diameter
and, if motion blur is to be smoothed, the length of the projected
motion vector in pixels.

float box(float x, float radius) {
return fabs(x) < radius ? 0.5/radius : 0; }

// process samples front-to-back
qsort(s, N, sizeof(*s), compare_sample_z);
float cov_1 = 0.0;
float cov_5 = 0.0;
float cov = 0.0;
rgb sum(0,0,0);
for (int i = 0; i < N; i++) {

// user programmable "denoising" blur diameter
float D = s[i].denoisingblur;
float w_1 = (1/ns)*box(s[i].x,0.5)*box(s[i].y,0.5);
float w_5 = (1/ns)*box(s[i].x,2.5)*box(s[i].y,2.5);
float w;
float blend = clamp((D-1)/5, 0, 1);
w = blend * (w_5*(1 - cov_1) + w_1*cov_1);
cov_5 += blend * (w_5*(1 - cov_1));
w += (1-blend) * (w_1*(1 - cov_5) + w_5*cov_5);
cov_1 += (1-blend) * (w_1*(1 - cov_5));
cov += w;
sum += w * s[i].color;

}
image->setPixel(x, y, (1/cov)*sum);

B Four Scale Code Sample

When the block sizes are 1x1 and 7x7, there is a visible jump be-
tween the scales, so adding the intermediate scales 3x3 and 5x5
is an improvement. This algorithm was used for Figure 5 (fairy)
where the extreme depth of field made noise more obvious and
wider maximum blurring more beneficial. Blending between the
scales as in Appendix A could be done, but we have not found it to
be necessary in practice.

qsort(s, N, sizeof(*s), compare_sample_z);
float cov_1 = 0.0;
float cov_3 = 0.0;
float cov_5 = 0.0;
float cov_7 = 0.0;
float cov = 0.0;
rgb sum(0,0,0);
for (int i = 0; i < N; i++) {

float D = s[i].denoisingblur;
float w_1 = (1/ns)*box(s[i].x,0.5)*box(s[i].y,0.5);
float w_3 = (1/ns)*box(s[i].x,1.5)*box(s[i].y,1.5);
float w_5 = (1/ns)*box(s[i].x,2.5)*box(s[i].y,2.5);
float w_7 = (1/ns)*box(s[i].x,3.5)*box(s[i].y,3.5);
float w;
if (D > 7) {

w = w_7*(1 - cov_1 - cov_3 - cov_5) +
w_1*cov_1 + w_3*cov_3 + w_5*cov_5;

cov_7 += w_7*(1 - cov_1 - cov_3 - cov_5); }
else if (D > 5) {

w = w_5*(1 - cov_1 - cov_3 - cov_7) +
w_1*cov_1 + w_3*cov_3 + w_7*cov_7;

cov_5 += w_5*(1 - cov_1 - cov_3 - cov_7); }
else if (D > 3) {

w = w_3*(1 - cov_1 - cov_5 - cov_7) +
w_1*cov_1 + w_5*cov_5 + w_7*cov_7;

cov_3 += w_3*(1 - cov_1 - cov_5 - cov_7); }
else {

w = w_1*(1 - cov_3 - cov_5 - cov_7) +
w_3*cov_3 + w_5*cov_5 + w_7*cov_7;

cov_1 += w_1*(1 - cov_3 - cov_5 - cov_7); }
cov += w;
sum += w * s[i].color;

}
image->setPixel(x, y, (1/cov)*sum);
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